blob: 0c89c715ecd5d00e9f24e6084231ca1b508cad0e [file] [log] [blame]
/* SPDX-License-Identifier: LGPL-2.1-only */
/*
* Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
* @ingroup xfrmnl
* @defgroup sa Security Association
* @brief
*/
#include "nl-default.h"
#include <time.h>
#include <netlink/netlink.h>
#include <netlink/cache.h>
#include <netlink/object.h>
#include <netlink/xfrm/sa.h>
#include <netlink/xfrm/selector.h>
#include <netlink/xfrm/lifetime.h>
#include "nl-xfrm.h"
#include "nl-priv-dynamic-core/object-api.h"
#include "nl-priv-dynamic-core/nl-core.h"
#include "nl-priv-dynamic-core/cache-api.h"
#include "nl-aux-core/nl-core.h"
#include "nl-aux-xfrm/nl-xfrm.h"
/** @cond SKIP */
struct xfrmnl_stats {
uint32_t replay_window;
uint32_t replay;
uint32_t integrity_failed;
};
struct xfrmnl_algo_aead {
char alg_name[64];
uint32_t alg_key_len; /* in bits */
uint32_t alg_icv_len; /* in bits */
char alg_key[0];
};
struct xfrmnl_algo_auth {
char alg_name[64];
uint32_t alg_key_len; /* in bits */
uint32_t alg_trunc_len; /* in bits */
char alg_key[0];
};
struct xfrmnl_algo {
char alg_name[64];
uint32_t alg_key_len; /* in bits */
char alg_key[0];
};
struct xfrmnl_encap_tmpl {
uint16_t encap_type;
uint16_t encap_sport;
uint16_t encap_dport;
struct nl_addr* encap_oa;
};
struct xfrmnl_user_offload {
int ifindex;
uint8_t flags;
};
struct xfrmnl_sa {
NLHDR_COMMON
struct xfrmnl_sel* sel;
struct xfrmnl_id id;
struct nl_addr* saddr;
struct xfrmnl_ltime_cfg* lft;
struct xfrmnl_lifetime_cur curlft;
struct xfrmnl_stats stats;
uint32_t seq;
uint32_t reqid;
uint16_t family;
uint8_t mode; /* XFRM_MODE_xxx */
uint8_t replay_window;
uint8_t flags;
struct xfrmnl_algo_aead* aead;
struct xfrmnl_algo_auth* auth;
struct xfrmnl_algo* crypt;
struct xfrmnl_algo* comp;
struct xfrmnl_encap_tmpl* encap;
uint32_t tfcpad;
struct nl_addr* coaddr;
struct xfrmnl_mark mark;
struct xfrmnl_user_sec_ctx* sec_ctx;
uint32_t replay_maxage;
uint32_t replay_maxdiff;
struct xfrmnl_replay_state replay_state;
struct xfrmnl_replay_state_esn* replay_state_esn;
uint8_t hard;
struct xfrmnl_user_offload* user_offload;
};
#define XFRM_SA_ATTR_SEL 0x01
#define XFRM_SA_ATTR_DADDR 0x02
#define XFRM_SA_ATTR_SPI 0x04
#define XFRM_SA_ATTR_PROTO 0x08
#define XFRM_SA_ATTR_SADDR 0x10
#define XFRM_SA_ATTR_LTIME_CFG 0x20
#define XFRM_SA_ATTR_LTIME_CUR 0x40
#define XFRM_SA_ATTR_STATS 0x80
#define XFRM_SA_ATTR_SEQ 0x100
#define XFRM_SA_ATTR_REQID 0x200
#define XFRM_SA_ATTR_FAMILY 0x400
#define XFRM_SA_ATTR_MODE 0x800
#define XFRM_SA_ATTR_REPLAY_WIN 0x1000
#define XFRM_SA_ATTR_FLAGS 0x2000
#define XFRM_SA_ATTR_ALG_AEAD 0x4000
#define XFRM_SA_ATTR_ALG_AUTH 0x8000
#define XFRM_SA_ATTR_ALG_CRYPT 0x10000
#define XFRM_SA_ATTR_ALG_COMP 0x20000
#define XFRM_SA_ATTR_ENCAP 0x40000
#define XFRM_SA_ATTR_TFCPAD 0x80000
#define XFRM_SA_ATTR_COADDR 0x100000
#define XFRM_SA_ATTR_MARK 0x200000
#define XFRM_SA_ATTR_SECCTX 0x400000
#define XFRM_SA_ATTR_REPLAY_MAXAGE 0x800000
#define XFRM_SA_ATTR_REPLAY_MAXDIFF 0x1000000
#define XFRM_SA_ATTR_REPLAY_STATE 0x2000000
#define XFRM_SA_ATTR_EXPIRE 0x4000000
#define XFRM_SA_ATTR_OFFLOAD_DEV 0x8000000
static struct nl_cache_ops xfrmnl_sa_ops;
static struct nl_object_ops xfrm_sa_obj_ops;
/** @endcond */
static void xfrm_sa_alloc_data(struct nl_object *c)
{
struct xfrmnl_sa* sa = nl_object_priv (c);
if ((sa->sel = xfrmnl_sel_alloc ()) == NULL)
return;
if ((sa->lft = xfrmnl_ltime_cfg_alloc ()) == NULL)
return;
}
static void xfrm_sa_free_data(struct nl_object *c)
{
struct xfrmnl_sa* sa = nl_object_priv (c);
if (sa == NULL)
return;
xfrmnl_sel_put (sa->sel);
xfrmnl_ltime_cfg_put (sa->lft);
nl_addr_put (sa->id.daddr);
nl_addr_put (sa->saddr);
if (sa->aead)
free (sa->aead);
if (sa->auth)
free (sa->auth);
if (sa->crypt)
free (sa->crypt);
if (sa->comp)
free (sa->comp);
if (sa->encap) {
if (sa->encap->encap_oa)
nl_addr_put(sa->encap->encap_oa);
free(sa->encap);
}
if (sa->coaddr)
nl_addr_put (sa->coaddr);
if (sa->sec_ctx)
free (sa->sec_ctx);
if (sa->replay_state_esn)
free (sa->replay_state_esn);
if (sa->user_offload)
free(sa->user_offload);
}
static int xfrm_sa_clone(struct nl_object *_dst, struct nl_object *_src)
{
struct xfrmnl_sa* dst = nl_object_priv(_dst);
struct xfrmnl_sa* src = nl_object_priv(_src);
uint32_t len = 0;
dst->sel = NULL;
dst->id.daddr = NULL;
dst->saddr = NULL;
dst->lft = NULL;
dst->aead = NULL;
dst->auth = NULL;
dst->crypt = NULL;
dst->comp = NULL;
dst->encap = NULL;
dst->coaddr = NULL;
dst->sec_ctx = NULL;
dst->replay_state_esn = NULL;
dst->user_offload = NULL;
if (src->sel)
if ((dst->sel = xfrmnl_sel_clone (src->sel)) == NULL)
return -NLE_NOMEM;
if (src->lft)
if ((dst->lft = xfrmnl_ltime_cfg_clone (src->lft)) == NULL)
return -NLE_NOMEM;
if (src->id.daddr)
if ((dst->id.daddr = nl_addr_clone (src->id.daddr)) == NULL)
return -NLE_NOMEM;
if (src->saddr)
if ((dst->saddr = nl_addr_clone (src->saddr)) == NULL)
return -NLE_NOMEM;
if (src->aead) {
len = sizeof (struct xfrmnl_algo_aead) + ((src->aead->alg_key_len + 7) / 8);
if ((dst->aead = calloc (1, len)) == NULL)
return -NLE_NOMEM;
memcpy ((void *)dst->aead, (void *)src->aead, len);
}
if (src->auth) {
len = sizeof (struct xfrmnl_algo_auth) + ((src->auth->alg_key_len + 7) / 8);
if ((dst->auth = calloc (1, len)) == NULL)
return -NLE_NOMEM;
memcpy ((void *)dst->auth, (void *)src->auth, len);
}
if (src->crypt) {
len = sizeof (struct xfrmnl_algo) + ((src->crypt->alg_key_len + 7) / 8);
if ((dst->crypt = calloc (1, len)) == NULL)
return -NLE_NOMEM;
memcpy ((void *)dst->crypt, (void *)src->crypt, len);
}
if (src->comp) {
len = sizeof (struct xfrmnl_algo) + ((src->comp->alg_key_len + 7) / 8);
if ((dst->comp = calloc (1, len)) == NULL)
return -NLE_NOMEM;
memcpy ((void *)dst->comp, (void *)src->comp, len);
}
if (src->encap) {
len = sizeof (struct xfrmnl_encap_tmpl);
if ((dst->encap = calloc (1, len)) == NULL)
return -NLE_NOMEM;
memcpy ((void *)dst->encap, (void *)src->encap, len);
}
if (src->coaddr)
if ((dst->coaddr = nl_addr_clone (src->coaddr)) == NULL)
return -NLE_NOMEM;
if (src->sec_ctx) {
len = sizeof (*src->sec_ctx) + src->sec_ctx->ctx_len;
if ((dst->sec_ctx = calloc (1, len)) == NULL)
return -NLE_NOMEM;
memcpy ((void *)dst->sec_ctx, (void *)src->sec_ctx, len);
}
if (src->replay_state_esn) {
len = sizeof (struct xfrmnl_replay_state_esn) + (src->replay_state_esn->bmp_len * sizeof (uint32_t));
if ((dst->replay_state_esn = calloc (1, len)) == NULL)
return -NLE_NOMEM;
memcpy ((void *)dst->replay_state_esn, (void *)src->replay_state_esn, len);
}
if (src->user_offload) {
dst->user_offload = _nl_memdup_ptr(src->user_offload);
if (!dst->user_offload)
return -NLE_NOMEM;
}
return 0;
}
static uint64_t xfrm_sa_compare(struct nl_object *_a, struct nl_object *_b,
uint64_t attrs, int flags)
{
struct xfrmnl_sa* a = (struct xfrmnl_sa *) _a;
struct xfrmnl_sa* b = (struct xfrmnl_sa *) _b;
uint64_t diff = 0;
int found = 0;
#define _DIFF(ATTR, EXPR) ATTR_DIFF(attrs, ATTR, a, b, EXPR)
diff |= _DIFF(XFRM_SA_ATTR_SEL, xfrmnl_sel_cmp(a->sel, b->sel));
diff |= _DIFF(XFRM_SA_ATTR_DADDR,
nl_addr_cmp(a->id.daddr, b->id.daddr));
diff |= _DIFF(XFRM_SA_ATTR_SPI, a->id.spi != b->id.spi);
diff |= _DIFF(XFRM_SA_ATTR_PROTO, a->id.proto != b->id.proto);
diff |= _DIFF(XFRM_SA_ATTR_SADDR, nl_addr_cmp(a->saddr, b->saddr));
diff |= _DIFF(XFRM_SA_ATTR_LTIME_CFG,
xfrmnl_ltime_cfg_cmp(a->lft, b->lft));
diff |= _DIFF(XFRM_SA_ATTR_REQID, a->reqid != b->reqid);
diff |= _DIFF(XFRM_SA_ATTR_FAMILY, a->family != b->family);
diff |= _DIFF(XFRM_SA_ATTR_MODE, a->mode != b->mode);
diff |= _DIFF(XFRM_SA_ATTR_REPLAY_WIN,
a->replay_window != b->replay_window);
diff |= _DIFF(XFRM_SA_ATTR_FLAGS, a->flags != b->flags);
diff |= _DIFF(XFRM_SA_ATTR_ALG_AEAD,
(strcmp(a->aead->alg_name, b->aead->alg_name) ||
(a->aead->alg_key_len != b->aead->alg_key_len) ||
(a->aead->alg_icv_len != b->aead->alg_icv_len) ||
memcmp(a->aead->alg_key, b->aead->alg_key,
((a->aead->alg_key_len + 7) / 8))));
diff |= _DIFF(XFRM_SA_ATTR_ALG_AUTH,
(strcmp(a->auth->alg_name, b->auth->alg_name) ||
(a->auth->alg_key_len != b->auth->alg_key_len) ||
(a->auth->alg_trunc_len != b->auth->alg_trunc_len) ||
memcmp(a->auth->alg_key, b->auth->alg_key,
((a->auth->alg_key_len + 7) / 8))));
diff |= _DIFF(XFRM_SA_ATTR_ALG_CRYPT,
(strcmp(a->crypt->alg_name, b->crypt->alg_name) ||
(a->crypt->alg_key_len != b->crypt->alg_key_len) ||
memcmp(a->crypt->alg_key, b->crypt->alg_key,
((a->crypt->alg_key_len + 7) / 8))));
diff |= _DIFF(XFRM_SA_ATTR_ALG_COMP,
(strcmp(a->comp->alg_name, b->comp->alg_name) ||
(a->comp->alg_key_len != b->comp->alg_key_len) ||
memcmp(a->comp->alg_key, b->comp->alg_key,
((a->comp->alg_key_len + 7) / 8))));
diff |= _DIFF(XFRM_SA_ATTR_ENCAP,
((a->encap->encap_type != b->encap->encap_type) ||
(a->encap->encap_sport != b->encap->encap_sport) ||
(a->encap->encap_dport != b->encap->encap_dport) ||
nl_addr_cmp(a->encap->encap_oa, b->encap->encap_oa)));
diff |= _DIFF(XFRM_SA_ATTR_TFCPAD, a->tfcpad != b->tfcpad);
diff |= _DIFF(XFRM_SA_ATTR_COADDR, nl_addr_cmp(a->coaddr, b->coaddr));
diff |= _DIFF(XFRM_SA_ATTR_MARK,
(a->mark.m != b->mark.m) || (a->mark.v != b->mark.v));
diff |= _DIFF(XFRM_SA_ATTR_SECCTX,
((a->sec_ctx->ctx_doi != b->sec_ctx->ctx_doi) ||
(a->sec_ctx->ctx_alg != b->sec_ctx->ctx_alg) ||
(a->sec_ctx->ctx_len != b->sec_ctx->ctx_len) ||
strcmp(a->sec_ctx->ctx, b->sec_ctx->ctx)));
diff |= _DIFF(XFRM_SA_ATTR_REPLAY_MAXAGE,
a->replay_maxage != b->replay_maxage);
diff |= _DIFF(XFRM_SA_ATTR_REPLAY_MAXDIFF,
a->replay_maxdiff != b->replay_maxdiff);
diff |= _DIFF(XFRM_SA_ATTR_EXPIRE, a->hard != b->hard);
/* Compare replay states */
found = AVAILABLE_MISMATCH (a, b, XFRM_SA_ATTR_REPLAY_STATE);
if (found == 0) // attribute exists in both objects
{
if (((a->replay_state_esn != NULL) && (b->replay_state_esn == NULL)) ||
((a->replay_state_esn == NULL) && (b->replay_state_esn != NULL)))
found |= 1;
if (found == 0) // same replay type. compare actual values
{
if (a->replay_state_esn)
{
if (a->replay_state_esn->bmp_len != b->replay_state_esn->bmp_len)
diff |= 1;
else
{
uint32_t len = sizeof (struct xfrmnl_replay_state_esn) +
(a->replay_state_esn->bmp_len * sizeof (uint32_t));
diff |= memcmp (a->replay_state_esn, b->replay_state_esn, len);
}
}
else
{
if ((a->replay_state.oseq != b->replay_state.oseq) ||
(a->replay_state.seq != b->replay_state.seq) ||
(a->replay_state.bitmap != b->replay_state.bitmap))
diff |= 1;
}
}
}
#undef _DIFF
return diff;
}
/**
* @name XFRM SA Attribute Translations
* @{
*/
static const struct trans_tbl sa_attrs[] = {
__ADD(XFRM_SA_ATTR_SEL, selector),
__ADD(XFRM_SA_ATTR_DADDR, daddr),
__ADD(XFRM_SA_ATTR_SPI, spi),
__ADD(XFRM_SA_ATTR_PROTO, proto),
__ADD(XFRM_SA_ATTR_SADDR, saddr),
__ADD(XFRM_SA_ATTR_LTIME_CFG, lifetime_cfg),
__ADD(XFRM_SA_ATTR_LTIME_CUR, lifetime_cur),
__ADD(XFRM_SA_ATTR_STATS, stats),
__ADD(XFRM_SA_ATTR_SEQ, seqnum),
__ADD(XFRM_SA_ATTR_REQID, reqid),
__ADD(XFRM_SA_ATTR_FAMILY, family),
__ADD(XFRM_SA_ATTR_MODE, mode),
__ADD(XFRM_SA_ATTR_REPLAY_WIN, replay_window),
__ADD(XFRM_SA_ATTR_FLAGS, flags),
__ADD(XFRM_SA_ATTR_ALG_AEAD, alg_aead),
__ADD(XFRM_SA_ATTR_ALG_AUTH, alg_auth),
__ADD(XFRM_SA_ATTR_ALG_CRYPT, alg_crypto),
__ADD(XFRM_SA_ATTR_ALG_COMP, alg_comp),
__ADD(XFRM_SA_ATTR_ENCAP, encap),
__ADD(XFRM_SA_ATTR_TFCPAD, tfcpad),
__ADD(XFRM_SA_ATTR_COADDR, coaddr),
__ADD(XFRM_SA_ATTR_MARK, mark),
__ADD(XFRM_SA_ATTR_SECCTX, sec_ctx),
__ADD(XFRM_SA_ATTR_REPLAY_MAXAGE, replay_maxage),
__ADD(XFRM_SA_ATTR_REPLAY_MAXDIFF, replay_maxdiff),
__ADD(XFRM_SA_ATTR_REPLAY_STATE, replay_state),
__ADD(XFRM_SA_ATTR_EXPIRE, expire),
__ADD(XFRM_SA_ATTR_OFFLOAD_DEV, user_offload),
};
static char* xfrm_sa_attrs2str(int attrs, char *buf, size_t len)
{
return __flags2str (attrs, buf, len, sa_attrs, ARRAY_SIZE(sa_attrs));
}
/** @} */
/**
* @name XFRM SA Flags Translations
* @{
*/
static const struct trans_tbl sa_flags[] = {
__ADD(XFRM_STATE_NOECN, no ecn),
__ADD(XFRM_STATE_DECAP_DSCP, decap dscp),
__ADD(XFRM_STATE_NOPMTUDISC, no pmtu discovery),
__ADD(XFRM_STATE_WILDRECV, wild receive),
__ADD(XFRM_STATE_ICMP, icmp),
__ADD(XFRM_STATE_AF_UNSPEC, unspecified),
__ADD(XFRM_STATE_ALIGN4, align4),
__ADD(XFRM_STATE_ESN, esn),
};
char* xfrmnl_sa_flags2str(int flags, char *buf, size_t len)
{
return __flags2str (flags, buf, len, sa_flags, ARRAY_SIZE(sa_flags));
}
int xfrmnl_sa_str2flag(const char *name)
{
return __str2flags (name, sa_flags, ARRAY_SIZE(sa_flags));
}
/** @} */
/**
* @name XFRM SA Mode Translations
* @{
*/
static const struct trans_tbl sa_modes[] = {
__ADD(XFRM_MODE_TRANSPORT, transport),
__ADD(XFRM_MODE_TUNNEL, tunnel),
__ADD(XFRM_MODE_ROUTEOPTIMIZATION, route optimization),
__ADD(XFRM_MODE_IN_TRIGGER, in trigger),
__ADD(XFRM_MODE_BEET, beet),
};
char* xfrmnl_sa_mode2str(int mode, char *buf, size_t len)
{
return __type2str (mode, buf, len, sa_modes, ARRAY_SIZE(sa_modes));
}
int xfrmnl_sa_str2mode(const char *name)
{
return __str2type (name, sa_modes, ARRAY_SIZE(sa_modes));
}
/** @} */
static void xfrm_sa_dump_line(struct nl_object *a, struct nl_dump_params *p)
{
char dst[INET6_ADDRSTRLEN+5], src[INET6_ADDRSTRLEN+5];
struct xfrmnl_sa* sa = (struct xfrmnl_sa *) a;
char flags[128], mode[128];
time_t add_time, use_time;
struct tm *add_time_tm, *use_time_tm;
struct tm tm_buf;
nl_dump_line(p, "src %s dst %s family: %s\n", nl_addr2str(sa->saddr, src, sizeof(src)),
nl_addr2str(sa->id.daddr, dst, sizeof(dst)),
nl_af2str (sa->family, flags, sizeof (flags)));
nl_dump_line(p, "\tproto %s spi 0x%x reqid %u\n",
nl_ip_proto2str (sa->id.proto, flags, sizeof(flags)),
sa->id.spi, sa->reqid);
xfrmnl_sa_flags2str(sa->flags, flags, sizeof (flags));
xfrmnl_sa_mode2str(sa->mode, mode, sizeof (mode));
nl_dump_line(p, "\tmode: %s flags: %s (0x%x) seq: %u replay window: %u\n",
mode, flags, sa->flags, sa->seq, sa->replay_window);
nl_dump_line(p, "\tlifetime configuration: \n");
if (sa->lft->soft_byte_limit == XFRM_INF)
sprintf (flags, "INF");
else
sprintf (flags, "%" PRIu64, sa->lft->soft_byte_limit);
if (sa->lft->soft_packet_limit == XFRM_INF)
sprintf (mode, "INF");
else
sprintf (mode, "%" PRIu64, sa->lft->soft_packet_limit);
nl_dump_line(p, "\t\tsoft limit: %s (bytes), %s (packets)\n", flags, mode);
if (sa->lft->hard_byte_limit == XFRM_INF)
sprintf (flags, "INF");
else
sprintf (flags, "%" PRIu64, sa->lft->hard_byte_limit);
if (sa->lft->hard_packet_limit == XFRM_INF)
sprintf (mode, "INF");
else
sprintf (mode, "%" PRIu64, sa->lft->hard_packet_limit);
nl_dump_line(p, "\t\thard limit: %s (bytes), %s (packets)\n", flags,
mode);
nl_dump_line(
p,
"\t\tsoft add_time: %llu (seconds), soft use_time: %llu (seconds) \n",
(long long unsigned)sa->lft->soft_add_expires_seconds,
(long long unsigned)sa->lft->soft_use_expires_seconds);
nl_dump_line(
p,
"\t\thard add_time: %llu (seconds), hard use_time: %llu (seconds) \n",
(long long unsigned)sa->lft->hard_add_expires_seconds,
(long long unsigned)sa->lft->hard_use_expires_seconds);
nl_dump_line(p, "\tlifetime current: \n");
nl_dump_line(p, "\t\t%llu bytes, %llu packets\n",
(long long unsigned)sa->curlft.bytes,
(long long unsigned)sa->curlft.packets);
if (sa->curlft.add_time != 0)
{
add_time = sa->curlft.add_time;
add_time_tm = gmtime_r (&add_time, &tm_buf);
strftime (flags, 128, "%Y-%m-%d %H-%M-%S", add_time_tm);
}
else
{
sprintf (flags, "%s", "-");
}
if (sa->curlft.use_time != 0)
{
use_time = sa->curlft.use_time;
use_time_tm = gmtime_r (&use_time, &tm_buf);
strftime (mode, 128, "%Y-%m-%d %H-%M-%S", use_time_tm);
}
else
{
sprintf (mode, "%s", "-");
}
nl_dump_line(p, "\t\tadd_time: %s, use_time: %s\n", flags, mode);
if (sa->aead)
{
nl_dump_line(p, "\tAEAD Algo: \n");
nl_dump_line(p, "\t\tName: %s Key len(bits): %u ICV Len(bits): %u\n",
sa->aead->alg_name, sa->aead->alg_key_len, sa->aead->alg_icv_len);
}
if (sa->auth)
{
nl_dump_line(p, "\tAuth Algo: \n");
nl_dump_line(p, "\t\tName: %s Key len(bits): %u Trunc len(bits): %u\n",
sa->auth->alg_name, sa->auth->alg_key_len, sa->auth->alg_trunc_len);
}
if (sa->crypt)
{
nl_dump_line(p, "\tEncryption Algo: \n");
nl_dump_line(p, "\t\tName: %s Key len(bits): %u\n",
sa->crypt->alg_name, sa->crypt->alg_key_len);
}
if (sa->comp)
{
nl_dump_line(p, "\tCompression Algo: \n");
nl_dump_line(p, "\t\tName: %s Key len(bits): %u\n",
sa->comp->alg_name, sa->comp->alg_key_len);
}
if (sa->encap)
{
nl_dump_line(p, "\tEncapsulation template: \n");
nl_dump_line(p, "\t\tType: %d Src port: %d Dst port: %d Encap addr: %s\n",
sa->encap->encap_type, sa->encap->encap_sport, sa->encap->encap_dport,
nl_addr2str (sa->encap->encap_oa, dst, sizeof (dst)));
}
if (sa->ce_mask & XFRM_SA_ATTR_TFCPAD)
nl_dump_line(p, "\tTFC Pad: %u\n", sa->tfcpad);
if (sa->ce_mask & XFRM_SA_ATTR_COADDR)
nl_dump_line(p, "\tCO Address: %s\n", nl_addr2str (sa->coaddr, dst, sizeof (dst)));
if (sa->ce_mask & XFRM_SA_ATTR_MARK)
nl_dump_line(p, "\tMark mask: 0x%x Mark value: 0x%x\n", sa->mark.m, sa->mark.v);
if (sa->ce_mask & XFRM_SA_ATTR_SECCTX)
nl_dump_line(p, "\tDOI: %d Algo: %d Len: %u ctx: %s\n", sa->sec_ctx->ctx_doi,
sa->sec_ctx->ctx_alg, sa->sec_ctx->ctx_len, sa->sec_ctx->ctx);
nl_dump_line(p, "\treplay info: \n");
nl_dump_line(p, "\t\tmax age %u max diff %u \n", sa->replay_maxage, sa->replay_maxdiff);
if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_STATE)
{
nl_dump_line(p, "\treplay state info: \n");
if (sa->replay_state_esn)
{
nl_dump_line(p, "\t\toseq %u seq %u oseq_hi %u seq_hi %u replay window: %u \n",
sa->replay_state_esn->oseq, sa->replay_state_esn->seq,
sa->replay_state_esn->oseq_hi, sa->replay_state_esn->seq_hi,
sa->replay_state_esn->replay_window);
}
else
{
nl_dump_line(p, "\t\toseq %u seq %u bitmap: %u \n", sa->replay_state.oseq,
sa->replay_state.seq, sa->replay_state.bitmap);
}
}
nl_dump_line(p, "\tselector info: \n");
xfrmnl_sel_dump (sa->sel, p);
nl_dump_line(p, "\tHard: %d\n", sa->hard);
nl_dump(p, "\n");
}
static void xfrm_sa_dump_stats(struct nl_object *a, struct nl_dump_params *p)
{
struct xfrmnl_sa* sa = (struct xfrmnl_sa*)a;
nl_dump_line(p, "\tstats: \n");
nl_dump_line(p, "\t\treplay window: %u replay: %u integrity failed: %u \n",
sa->stats.replay_window, sa->stats.replay, sa->stats.integrity_failed);
return;
}
static void xfrm_sa_dump_details(struct nl_object *a, struct nl_dump_params *p)
{
xfrm_sa_dump_line(a, p);
xfrm_sa_dump_stats (a, p);
}
/**
* @name XFRM SA Object Allocation/Freeage
* @{
*/
struct xfrmnl_sa* xfrmnl_sa_alloc(void)
{
return (struct xfrmnl_sa*) nl_object_alloc(&xfrm_sa_obj_ops);
}
void xfrmnl_sa_put(struct xfrmnl_sa* sa)
{
nl_object_put((struct nl_object *) sa);
}
/** @} */
/**
* @name SA Cache Managament
* @{
*/
/**
* Build a SA cache including all SAs currently configured in the kernel.
* @arg sock Netlink socket.
* @arg result Pointer to store resulting cache.
*
* Allocates a new SA cache, initializes it properly and updates it
* to include all SAs currently configured in the kernel.
*
* @return 0 on success or a negative error code.
*/
int xfrmnl_sa_alloc_cache(struct nl_sock *sock, struct nl_cache **result)
{
return nl_cache_alloc_and_fill(&xfrmnl_sa_ops, sock, result);
}
/**
* Look up a SA by destination address, SPI, protocol
* @arg cache SA cache
* @arg daddr destination address of the SA
* @arg spi SPI
* @arg proto protocol
* @return sa handle or NULL if no match was found.
*/
struct xfrmnl_sa* xfrmnl_sa_get(struct nl_cache* cache, struct nl_addr* daddr,
unsigned int spi, unsigned int proto)
{
struct xfrmnl_sa *sa;
//nl_list_for_each_entry(sa, &cache->c_items, ce_list) {
for (sa = (struct xfrmnl_sa*)nl_cache_get_first (cache);
sa != NULL;
sa = (struct xfrmnl_sa*)nl_cache_get_next ((struct nl_object*)sa))
{
if (sa->id.proto == proto &&
sa->id.spi == spi &&
!nl_addr_cmp(sa->id.daddr, daddr))
{
nl_object_get((struct nl_object *) sa);
return sa;
}
}
return NULL;
}
/** @} */
static struct nla_policy xfrm_sa_policy[XFRMA_MAX+1] = {
[XFRMA_SA] = { .minlen = sizeof(struct xfrm_usersa_info)},
[XFRMA_ALG_AUTH_TRUNC] = { .minlen = sizeof(struct xfrm_algo_auth)},
[XFRMA_ALG_AEAD] = { .minlen = sizeof(struct xfrm_algo_aead) },
[XFRMA_ALG_AUTH] = { .minlen = sizeof(struct xfrm_algo) },
[XFRMA_ALG_CRYPT] = { .minlen = sizeof(struct xfrm_algo) },
[XFRMA_ALG_COMP] = { .minlen = sizeof(struct xfrm_algo) },
[XFRMA_ENCAP] = { .minlen = sizeof(struct xfrm_encap_tmpl) },
[XFRMA_TMPL] = { .minlen = sizeof(struct xfrm_user_tmpl) },
[XFRMA_SEC_CTX] = { .minlen = sizeof(struct xfrm_sec_ctx) },
[XFRMA_LTIME_VAL] = { .minlen = sizeof(struct xfrm_lifetime_cur) },
[XFRMA_REPLAY_VAL] = { .minlen = sizeof(struct xfrm_replay_state) },
[XFRMA_OFFLOAD_DEV] = { .minlen = sizeof(struct xfrm_user_offload) },
[XFRMA_REPLAY_THRESH] = { .type = NLA_U32 },
[XFRMA_ETIMER_THRESH] = { .type = NLA_U32 },
[XFRMA_SRCADDR] = { .minlen = sizeof(xfrm_address_t) },
[XFRMA_COADDR] = { .minlen = sizeof(xfrm_address_t) },
[XFRMA_MARK] = { .minlen = sizeof(struct xfrm_mark) },
[XFRMA_TFCPAD] = { .type = NLA_U32 },
[XFRMA_REPLAY_ESN_VAL] = { .minlen = sizeof(struct xfrm_replay_state_esn) },
};
static int xfrm_sa_request_update(struct nl_cache *c, struct nl_sock *h)
{
return nl_send_simple (h, XFRM_MSG_GETSA, NLM_F_DUMP, NULL, 0);
}
int xfrmnl_sa_parse(struct nlmsghdr *n, struct xfrmnl_sa **result)
{
_nl_auto_nl_addr struct nl_addr *addr1 = NULL;
_nl_auto_nl_addr struct nl_addr *addr2 = NULL;
_nl_auto_xfrmnl_sa struct xfrmnl_sa *sa = NULL;
struct nlattr *tb[XFRMA_MAX + 1];
struct xfrm_usersa_info* sa_info;
struct xfrm_user_expire* ue;
int len, err;
sa = xfrmnl_sa_alloc();
if (!sa)
return -NLE_NOMEM;
sa->ce_msgtype = n->nlmsg_type;
if (n->nlmsg_type == XFRM_MSG_EXPIRE)
{
ue = nlmsg_data(n);
sa_info = &ue->state;
sa->hard = ue->hard;
sa->ce_mask |= XFRM_SA_ATTR_EXPIRE;
}
else if (n->nlmsg_type == XFRM_MSG_DELSA)
{
sa_info = (struct xfrm_usersa_info*)((char *)nlmsg_data(n) + sizeof (struct xfrm_usersa_id) + NLA_HDRLEN);
}
else
{
sa_info = nlmsg_data(n);
}
err = nlmsg_parse(n, sizeof(struct xfrm_usersa_info), tb, XFRMA_MAX, xfrm_sa_policy);
if (err < 0)
return err;
if (!(addr1 = _nl_addr_build(sa_info->sel.family, &sa_info->sel.daddr)))
return -NLE_NOMEM;
nl_addr_set_prefixlen (addr1, sa_info->sel.prefixlen_d);
xfrmnl_sel_set_daddr (sa->sel, addr1);
xfrmnl_sel_set_prefixlen_d (sa->sel, sa_info->sel.prefixlen_d);
if (!(addr2 = _nl_addr_build(sa_info->sel.family, &sa_info->sel.saddr)))
return -NLE_NOMEM;
nl_addr_set_prefixlen (addr2, sa_info->sel.prefixlen_s);
xfrmnl_sel_set_saddr (sa->sel, addr2);
xfrmnl_sel_set_prefixlen_s (sa->sel, sa_info->sel.prefixlen_s);
xfrmnl_sel_set_dport (sa->sel, ntohs(sa_info->sel.dport));
xfrmnl_sel_set_dportmask (sa->sel, ntohs(sa_info->sel.dport_mask));
xfrmnl_sel_set_sport (sa->sel, ntohs(sa_info->sel.sport));
xfrmnl_sel_set_sportmask (sa->sel, ntohs(sa_info->sel.sport_mask));
xfrmnl_sel_set_family (sa->sel, sa_info->sel.family);
xfrmnl_sel_set_proto (sa->sel, sa_info->sel.proto);
xfrmnl_sel_set_ifindex (sa->sel, sa_info->sel.ifindex);
xfrmnl_sel_set_userid (sa->sel, sa_info->sel.user);
sa->ce_mask |= XFRM_SA_ATTR_SEL;
if (!(sa->id.daddr = _nl_addr_build(sa_info->family, &sa_info->id.daddr)))
return -NLE_NOMEM;
sa->id.spi = ntohl(sa_info->id.spi);
sa->id.proto = sa_info->id.proto;
sa->ce_mask |= (XFRM_SA_ATTR_DADDR | XFRM_SA_ATTR_SPI | XFRM_SA_ATTR_PROTO);
if (!(sa->saddr = _nl_addr_build(sa_info->family, &sa_info->saddr)))
return -NLE_NOMEM;
sa->ce_mask |= XFRM_SA_ATTR_SADDR;
sa->lft->soft_byte_limit = sa_info->lft.soft_byte_limit;
sa->lft->hard_byte_limit = sa_info->lft.hard_byte_limit;
sa->lft->soft_packet_limit = sa_info->lft.soft_packet_limit;
sa->lft->hard_packet_limit = sa_info->lft.hard_packet_limit;
sa->lft->soft_add_expires_seconds = sa_info->lft.soft_add_expires_seconds;
sa->lft->hard_add_expires_seconds = sa_info->lft.hard_add_expires_seconds;
sa->lft->soft_use_expires_seconds = sa_info->lft.soft_use_expires_seconds;
sa->lft->hard_use_expires_seconds = sa_info->lft.hard_use_expires_seconds;
sa->ce_mask |= XFRM_SA_ATTR_LTIME_CFG;
sa->curlft.bytes = sa_info->curlft.bytes;
sa->curlft.packets = sa_info->curlft.packets;
sa->curlft.add_time = sa_info->curlft.add_time;
sa->curlft.use_time = sa_info->curlft.use_time;
sa->ce_mask |= XFRM_SA_ATTR_LTIME_CUR;
sa->stats.replay_window = sa_info->stats.replay_window;
sa->stats.replay = sa_info->stats.replay;
sa->stats.integrity_failed = sa_info->stats.integrity_failed;
sa->ce_mask |= XFRM_SA_ATTR_STATS;
sa->seq = sa_info->seq;
sa->reqid = sa_info->reqid;
sa->family = sa_info->family;
sa->mode = sa_info->mode;
sa->replay_window = sa_info->replay_window;
sa->flags = sa_info->flags;
sa->ce_mask |= (XFRM_SA_ATTR_SEQ | XFRM_SA_ATTR_REQID |
XFRM_SA_ATTR_FAMILY | XFRM_SA_ATTR_MODE |
XFRM_SA_ATTR_REPLAY_WIN | XFRM_SA_ATTR_FLAGS);
if (tb[XFRMA_ALG_AEAD]) {
struct xfrm_algo_aead* aead = nla_data(tb[XFRMA_ALG_AEAD]);
len = sizeof (struct xfrmnl_algo_aead) + ((aead->alg_key_len + 7) / 8);
if ((sa->aead = calloc (1, len)) == NULL)
return -NLE_NOMEM;
memcpy ((void *)sa->aead, (void *)aead, len);
sa->ce_mask |= XFRM_SA_ATTR_ALG_AEAD;
}
if (tb[XFRMA_ALG_AUTH_TRUNC]) {
struct xfrm_algo_auth* auth = nla_data(tb[XFRMA_ALG_AUTH_TRUNC]);
len = sizeof (struct xfrmnl_algo_auth) + ((auth->alg_key_len + 7) / 8);
if ((sa->auth = calloc (1, len)) == NULL)
return -NLE_NOMEM;
memcpy ((void *)sa->auth, (void *)auth, len);
sa->ce_mask |= XFRM_SA_ATTR_ALG_AUTH;
}
if (tb[XFRMA_ALG_AUTH] && !sa->auth) {
struct xfrm_algo* auth = nla_data(tb[XFRMA_ALG_AUTH]);
len = sizeof (struct xfrmnl_algo_auth) + ((auth->alg_key_len + 7) / 8);
if ((sa->auth = calloc (1, len)) == NULL)
return -NLE_NOMEM;
strcpy(sa->auth->alg_name, auth->alg_name);
memcpy(sa->auth->alg_key, auth->alg_key, (auth->alg_key_len + 7) / 8);
sa->auth->alg_key_len = auth->alg_key_len;
sa->ce_mask |= XFRM_SA_ATTR_ALG_AUTH;
}
if (tb[XFRMA_ALG_CRYPT]) {
struct xfrm_algo* crypt = nla_data(tb[XFRMA_ALG_CRYPT]);
len = sizeof (struct xfrmnl_algo) + ((crypt->alg_key_len + 7) / 8);
if ((sa->crypt = calloc (1, len)) == NULL)
return -NLE_NOMEM;
memcpy ((void *)sa->crypt, (void *)crypt, len);
sa->ce_mask |= XFRM_SA_ATTR_ALG_CRYPT;
}
if (tb[XFRMA_ALG_COMP]) {
struct xfrm_algo* comp = nla_data(tb[XFRMA_ALG_COMP]);
len = sizeof (struct xfrmnl_algo) + ((comp->alg_key_len + 7) / 8);
if ((sa->comp = calloc (1, len)) == NULL)
return -NLE_NOMEM;
memcpy ((void *)sa->comp, (void *)comp, len);
sa->ce_mask |= XFRM_SA_ATTR_ALG_COMP;
}
if (tb[XFRMA_ENCAP]) {
struct xfrm_encap_tmpl* encap = nla_data(tb[XFRMA_ENCAP]);
len = sizeof (struct xfrmnl_encap_tmpl);
if ((sa->encap = calloc (1, len)) == NULL)
return -NLE_NOMEM;
sa->encap->encap_type = encap->encap_type;
sa->encap->encap_sport = ntohs(encap->encap_sport);
sa->encap->encap_dport = ntohs(encap->encap_dport);
if (!(sa->encap->encap_oa = _nl_addr_build(sa_info->family,
&encap->encap_oa)))
return -NLE_NOMEM;
sa->ce_mask |= XFRM_SA_ATTR_ENCAP;
}
if (tb[XFRMA_TFCPAD]) {
sa->tfcpad = *(uint32_t*)nla_data(tb[XFRMA_TFCPAD]);
sa->ce_mask |= XFRM_SA_ATTR_TFCPAD;
}
if (tb[XFRMA_COADDR]) {
if (!(sa->coaddr = _nl_addr_build(
sa_info->family, nla_data(tb[XFRMA_COADDR]))))
return -NLE_NOMEM;
sa->ce_mask |= XFRM_SA_ATTR_COADDR;
}
if (tb[XFRMA_MARK]) {
struct xfrm_mark* m = nla_data(tb[XFRMA_MARK]);
sa->mark.m = m->m;
sa->mark.v = m->v;
sa->ce_mask |= XFRM_SA_ATTR_MARK;
}
if (tb[XFRMA_SEC_CTX]) {
struct xfrm_user_sec_ctx* sec_ctx = nla_data(tb[XFRMA_SEC_CTX]);
len = sizeof (struct xfrmnl_user_sec_ctx) + sec_ctx->ctx_len;
if ((sa->sec_ctx = calloc (1, len)) == NULL)
return -NLE_NOMEM;
memcpy (sa->sec_ctx, sec_ctx, len);
sa->ce_mask |= XFRM_SA_ATTR_SECCTX;
}
if (tb[XFRMA_ETIMER_THRESH]) {
sa->replay_maxage = *(uint32_t*)nla_data(tb[XFRMA_ETIMER_THRESH]);
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_MAXAGE;
}
if (tb[XFRMA_REPLAY_THRESH]) {
sa->replay_maxdiff = *(uint32_t*)nla_data(tb[XFRMA_REPLAY_THRESH]);
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_MAXDIFF;
}
if (tb[XFRMA_REPLAY_ESN_VAL]) {
struct xfrm_replay_state_esn* esn = nla_data (tb[XFRMA_REPLAY_ESN_VAL]);
len = sizeof (struct xfrmnl_replay_state_esn) + (sizeof (uint32_t) * esn->bmp_len);
if ((sa->replay_state_esn = calloc (1, len)) == NULL)
return -NLE_NOMEM;
memcpy ((void *)sa->replay_state_esn, (void *)esn, len);
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_STATE;
}
else if (tb[XFRMA_REPLAY_VAL])
{
struct xfrm_replay_state* replay_state = nla_data (tb[XFRMA_REPLAY_VAL]);
sa->replay_state.oseq = replay_state->oseq;
sa->replay_state.seq = replay_state->seq;
sa->replay_state.bitmap = replay_state->bitmap;
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_STATE;
sa->replay_state_esn = NULL;
}
if (tb[XFRMA_OFFLOAD_DEV]) {
struct xfrm_user_offload *offload;
len = sizeof(struct xfrmnl_user_offload);
if ((sa->user_offload = calloc(1, len)) == NULL)
return -NLE_NOMEM;
offload = nla_data(tb[XFRMA_OFFLOAD_DEV]);
sa->user_offload->ifindex = offload->ifindex;
sa->user_offload->flags = offload->flags;
sa->ce_mask |= XFRM_SA_ATTR_OFFLOAD_DEV;
}
*result = _nl_steal_pointer(&sa);
return 0;
}
static int xfrm_sa_update_cache (struct nl_cache *cache, struct nl_object *obj,
change_func_t change_cb, change_func_v2_t change_cb_v2,
void *data)
{
struct nl_object* old_sa;
struct xfrmnl_sa* sa = (struct xfrmnl_sa*)obj;
if (nl_object_get_msgtype (obj) == XFRM_MSG_EXPIRE)
{
/* On hard expiry, the SA gets deleted too from the kernel state without any
* further delete event. On Expire message, we are only updating the cache with
* the SA object's new state. In absence of the explicit delete event, the cache will
* be out of sync with the kernel state. To get around this, expiry messages cache
* operations are handled here (installed with NL_ACT_UNSPEC action) instead of
* in Libnl Cache module. */
/* Do we already have this object in the cache? */
old_sa = nl_cache_search(cache, obj);
if (old_sa)
{
/* Found corresponding SA object in cache. Delete it */
nl_cache_remove (old_sa);
}
/* Handle the expiry event now */
if (sa->hard == 0)
{
/* Soft expiry event: Save the new object to the
* cache and notify application of the expiry event. */
nl_cache_move (cache, obj);
if (old_sa == NULL)
{
/* Application CB present, no previous instance of SA object present.
* Notify application CB as a NEW event */
if (change_cb_v2)
change_cb_v2(cache, NULL, obj, 0, NL_ACT_NEW, data);
else if (change_cb)
change_cb(cache, obj, NL_ACT_NEW, data);
}
else if (old_sa)
{
uint64_t diff = 0;
if (change_cb || change_cb_v2)
diff = nl_object_diff64(old_sa, obj);
/* Application CB present, a previous instance of SA object present.
* Notify application CB as a CHANGE1 event */
if (diff) {
if (change_cb_v2) {
change_cb_v2(cache, old_sa, obj, diff, NL_ACT_CHANGE, data);
} else if (change_cb)
change_cb(cache, obj, NL_ACT_CHANGE, data);
}
nl_object_put (old_sa);
}
}
else
{
/* Hard expiry event: Delete the object from the
* cache and notify application of the expiry event. */
if (change_cb_v2)
change_cb_v2(cache, obj, NULL, 0, NL_ACT_DEL, data);
else if (change_cb)
change_cb (cache, obj, NL_ACT_DEL, data);
nl_object_put (old_sa);
}
/* Done handling expire message */
return 0;
}
else
{
/* All other messages other than Expire, let the standard Libnl cache
* module handle it. */
if (change_cb_v2)
return nl_cache_include_v2(cache, obj, change_cb_v2, data);
else
return nl_cache_include (cache, obj, change_cb, data);
}
}
static int xfrm_sa_msg_parser(struct nl_cache_ops *ops, struct sockaddr_nl *who,
struct nlmsghdr *n, struct nl_parser_param *pp)
{
struct xfrmnl_sa* sa;
int err;
if ((err = xfrmnl_sa_parse(n, &sa)) < 0)
return err;
err = pp->pp_cb((struct nl_object *) sa, pp);
xfrmnl_sa_put(sa);
return err;
}
/**
* @name XFRM SA Get
* @{
*/
int xfrmnl_sa_build_get_request(struct nl_addr* daddr, unsigned int spi, unsigned int protocol, unsigned int mark_v, unsigned int mark_m, struct nl_msg **result)
{
struct nl_msg *msg;
struct xfrm_usersa_id sa_id;
struct xfrm_mark mark;
if (!daddr || !spi)
{
fprintf(stderr, "APPLICATION BUG: %s:%d:%s: A valid destination address, spi must be specified\n",
__FILE__, __LINE__, __func__);
assert(0);
return -NLE_MISSING_ATTR;
}
memset(&sa_id, 0, sizeof(sa_id));
memcpy (&sa_id.daddr, nl_addr_get_binary_addr (daddr), sizeof (uint8_t) * nl_addr_get_len (daddr));
sa_id.family = nl_addr_get_family (daddr);
sa_id.spi = htonl(spi);
sa_id.proto = protocol;
if (!(msg = nlmsg_alloc_simple(XFRM_MSG_GETSA, 0)))
return -NLE_NOMEM;
if (nlmsg_append(msg, &sa_id, sizeof(sa_id), NLMSG_ALIGNTO) < 0)
goto nla_put_failure;
if ((mark_m & mark_v) != 0)
{
memset(&mark, 0, sizeof(struct xfrm_mark));
mark.m = mark_m;
mark.v = mark_v;
NLA_PUT (msg, XFRMA_MARK, sizeof (struct xfrm_mark), &mark);
}
*result = msg;
return 0;
nla_put_failure:
nlmsg_free(msg);
return -NLE_MSGSIZE;
}
int xfrmnl_sa_get_kernel(struct nl_sock* sock, struct nl_addr* daddr, unsigned int spi, unsigned int protocol, unsigned int mark_v, unsigned int mark_m, struct xfrmnl_sa** result)
{
struct nl_msg *msg = NULL;
struct nl_object *obj;
int err;
if ((err = xfrmnl_sa_build_get_request(daddr, spi, protocol, mark_m, mark_v, &msg)) < 0)
return err;
err = nl_send_auto(sock, msg);
nlmsg_free(msg);
if (err < 0)
return err;
if ((err = nl_pickup(sock, &xfrm_sa_msg_parser, &obj)) < 0)
return err;
/* We have used xfrm_sa_msg_parser(), object is definitely a xfrm sa */
*result = (struct xfrmnl_sa *) obj;
/* If an object has been returned, we also need to wait for the ACK */
if (err == 0 && obj)
nl_wait_for_ack(sock);
return 0;
}
/** @} */
static int build_xfrm_sa_message(struct xfrmnl_sa *tmpl, int cmd, int flags, struct nl_msg **result)
{
struct nl_msg* msg;
struct xfrm_usersa_info sa_info;
uint32_t len;
struct nl_addr* addr;
if (!(tmpl->ce_mask & XFRM_SA_ATTR_DADDR) ||
!(tmpl->ce_mask & XFRM_SA_ATTR_SPI) ||
!(tmpl->ce_mask & XFRM_SA_ATTR_PROTO))
return -NLE_MISSING_ATTR;
memset ((void*)&sa_info, 0, sizeof (sa_info));
if (tmpl->ce_mask & XFRM_SA_ATTR_SEL)
{
addr = xfrmnl_sel_get_daddr (tmpl->sel);
memcpy ((void*)&sa_info.sel.daddr, (void*)nl_addr_get_binary_addr (addr), sizeof (uint8_t) * nl_addr_get_len (addr));
addr = xfrmnl_sel_get_saddr (tmpl->sel);
memcpy ((void*)&sa_info.sel.saddr, (void*)nl_addr_get_binary_addr (addr), sizeof (uint8_t) * nl_addr_get_len (addr));
sa_info.sel.dport = htons (xfrmnl_sel_get_dport (tmpl->sel));
sa_info.sel.dport_mask = htons (xfrmnl_sel_get_dportmask (tmpl->sel));
sa_info.sel.sport = htons (xfrmnl_sel_get_sport (tmpl->sel));
sa_info.sel.sport_mask = htons (xfrmnl_sel_get_sportmask (tmpl->sel));
sa_info.sel.family = xfrmnl_sel_get_family (tmpl->sel);
sa_info.sel.prefixlen_d = xfrmnl_sel_get_prefixlen_d (tmpl->sel);
sa_info.sel.prefixlen_s = xfrmnl_sel_get_prefixlen_s (tmpl->sel);
sa_info.sel.proto = xfrmnl_sel_get_proto (tmpl->sel);
sa_info.sel.ifindex = xfrmnl_sel_get_ifindex (tmpl->sel);
sa_info.sel.user = xfrmnl_sel_get_userid (tmpl->sel);
}
memcpy (&sa_info.id.daddr, nl_addr_get_binary_addr (tmpl->id.daddr), sizeof (uint8_t) * nl_addr_get_len (tmpl->id.daddr));
sa_info.id.spi = htonl(tmpl->id.spi);
sa_info.id.proto = tmpl->id.proto;
if (tmpl->ce_mask & XFRM_SA_ATTR_SADDR)
memcpy (&sa_info.saddr, nl_addr_get_binary_addr (tmpl->saddr), sizeof (uint8_t) * nl_addr_get_len (tmpl->saddr));
if (tmpl->ce_mask & XFRM_SA_ATTR_LTIME_CFG)
{
sa_info.lft.soft_byte_limit = xfrmnl_ltime_cfg_get_soft_bytelimit (tmpl->lft);
sa_info.lft.hard_byte_limit = xfrmnl_ltime_cfg_get_hard_bytelimit (tmpl->lft);
sa_info.lft.soft_packet_limit = xfrmnl_ltime_cfg_get_soft_packetlimit (tmpl->lft);
sa_info.lft.hard_packet_limit = xfrmnl_ltime_cfg_get_hard_packetlimit (tmpl->lft);
sa_info.lft.soft_add_expires_seconds = xfrmnl_ltime_cfg_get_soft_addexpires (tmpl->lft);
sa_info.lft.hard_add_expires_seconds = xfrmnl_ltime_cfg_get_hard_addexpires (tmpl->lft);
sa_info.lft.soft_use_expires_seconds = xfrmnl_ltime_cfg_get_soft_useexpires (tmpl->lft);
sa_info.lft.hard_use_expires_seconds = xfrmnl_ltime_cfg_get_hard_useexpires (tmpl->lft);
}
//Skip current lifetime: cur lifetime can be updated only via AE
//Skip stats: stats cant be updated
//Skip seq: seq cant be updated
if (tmpl->ce_mask & XFRM_SA_ATTR_REQID)
sa_info.reqid = tmpl->reqid;
if (tmpl->ce_mask & XFRM_SA_ATTR_FAMILY)
sa_info.family = tmpl->family;
if (tmpl->ce_mask & XFRM_SA_ATTR_MODE)
sa_info.mode = tmpl->mode;
if (tmpl->ce_mask & XFRM_SA_ATTR_REPLAY_WIN)
sa_info.replay_window = tmpl->replay_window;
if (tmpl->ce_mask & XFRM_SA_ATTR_FLAGS)
sa_info.flags = tmpl->flags;
msg = nlmsg_alloc_simple(cmd, flags);
if (!msg)
return -NLE_NOMEM;
if (nlmsg_append(msg, &sa_info, sizeof(sa_info), NLMSG_ALIGNTO) < 0)
goto nla_put_failure;
if (tmpl->ce_mask & XFRM_SA_ATTR_ALG_AEAD) {
len = sizeof (struct xfrm_algo_aead) + ((tmpl->aead->alg_key_len + 7) / 8);
NLA_PUT (msg, XFRMA_ALG_AEAD, len, tmpl->aead);
}
if (tmpl->ce_mask & XFRM_SA_ATTR_ALG_AUTH) {
/* kernel prefers XFRMA_ALG_AUTH_TRUNC over XFRMA_ALG_AUTH, so only
* one of the attributes needs to be present */
if (tmpl->auth->alg_trunc_len) {
len = sizeof (struct xfrm_algo_auth) + ((tmpl->auth->alg_key_len + 7) / 8);
NLA_PUT (msg, XFRMA_ALG_AUTH_TRUNC, len, tmpl->auth);
} else {
struct xfrm_algo *auth;
len = sizeof (struct xfrm_algo) + ((tmpl->auth->alg_key_len + 7) / 8);
auth = malloc(len);
if (!auth) {
nlmsg_free(msg);
return -NLE_NOMEM;
}
_nl_strncpy_assert(auth->alg_name, tmpl->auth->alg_name, sizeof(auth->alg_name));
auth->alg_key_len = tmpl->auth->alg_key_len;
memcpy(auth->alg_key, tmpl->auth->alg_key, (tmpl->auth->alg_key_len + 7) / 8);
if (nla_put(msg, XFRMA_ALG_AUTH, len, auth) < 0) {
free(auth);
goto nla_put_failure;
}
free(auth);
}
}
if (tmpl->ce_mask & XFRM_SA_ATTR_ALG_CRYPT) {
len = sizeof (struct xfrm_algo) + ((tmpl->crypt->alg_key_len + 7) / 8);
NLA_PUT (msg, XFRMA_ALG_CRYPT, len, tmpl->crypt);
}
if (tmpl->ce_mask & XFRM_SA_ATTR_ALG_COMP) {
len = sizeof (struct xfrm_algo) + ((tmpl->comp->alg_key_len + 7) / 8);
NLA_PUT (msg, XFRMA_ALG_COMP, len, tmpl->comp);
}
if (tmpl->ce_mask & XFRM_SA_ATTR_ENCAP) {
struct xfrm_encap_tmpl* encap_tmpl;
struct nlattr* encap_attr;
len = sizeof (struct xfrm_encap_tmpl);
encap_attr = nla_reserve(msg, XFRMA_ENCAP, len);
if (!encap_attr)
goto nla_put_failure;
encap_tmpl = nla_data (encap_attr);
encap_tmpl->encap_type = tmpl->encap->encap_type;
encap_tmpl->encap_sport = htons (tmpl->encap->encap_sport);
encap_tmpl->encap_dport = htons (tmpl->encap->encap_dport);
memcpy (&encap_tmpl->encap_oa, nl_addr_get_binary_addr (tmpl->encap->encap_oa), sizeof (uint8_t) * nl_addr_get_len (tmpl->encap->encap_oa));
}
if (tmpl->ce_mask & XFRM_SA_ATTR_TFCPAD) {
NLA_PUT_U32 (msg, XFRMA_TFCPAD, tmpl->tfcpad);
}
if (tmpl->ce_mask & XFRM_SA_ATTR_COADDR) {
NLA_PUT (msg, XFRMA_COADDR, sizeof (xfrm_address_t), tmpl->coaddr);
}
if (tmpl->ce_mask & XFRM_SA_ATTR_MARK) {
NLA_PUT (msg, XFRMA_MARK, sizeof (struct xfrm_mark), &tmpl->mark);
}
if (tmpl->ce_mask & XFRM_SA_ATTR_SECCTX) {
len = sizeof (struct xfrm_sec_ctx) + tmpl->sec_ctx->ctx_len;
NLA_PUT (msg, XFRMA_SEC_CTX, len, tmpl->sec_ctx);
}
if (tmpl->ce_mask & XFRM_SA_ATTR_REPLAY_MAXAGE) {
NLA_PUT_U32 (msg, XFRMA_ETIMER_THRESH, tmpl->replay_maxage);
}
if (tmpl->ce_mask & XFRM_SA_ATTR_REPLAY_MAXDIFF) {
NLA_PUT_U32 (msg, XFRMA_REPLAY_THRESH, tmpl->replay_maxdiff);
}
if (tmpl->ce_mask & XFRM_SA_ATTR_REPLAY_STATE) {
if (tmpl->replay_state_esn) {
len = sizeof (struct xfrm_replay_state_esn) + (sizeof (uint32_t) * tmpl->replay_state_esn->bmp_len);
NLA_PUT (msg, XFRMA_REPLAY_ESN_VAL, len, tmpl->replay_state_esn);
}
else {
NLA_PUT (msg, XFRMA_REPLAY_VAL, sizeof (struct xfrm_replay_state), &tmpl->replay_state);
}
}
if (tmpl->ce_mask & XFRM_SA_ATTR_OFFLOAD_DEV) {
struct xfrm_user_offload *offload;
struct nlattr *attr;
len = sizeof(struct xfrm_user_offload);
attr = nla_reserve(msg, XFRMA_OFFLOAD_DEV, len);
if (!attr)
goto nla_put_failure;
offload = nla_data(attr);
offload->ifindex = tmpl->user_offload->ifindex;
offload->flags = tmpl->user_offload->flags;
}
*result = msg;
return 0;
nla_put_failure:
nlmsg_free(msg);
return -NLE_MSGSIZE;
}
/**
* @name XFRM SA Add
* @{
*/
int xfrmnl_sa_build_add_request(struct xfrmnl_sa* tmpl, int flags, struct nl_msg **result)
{
return build_xfrm_sa_message (tmpl, XFRM_MSG_NEWSA, flags, result);
}
int xfrmnl_sa_add(struct nl_sock* sk, struct xfrmnl_sa* tmpl, int flags)
{
int err;
struct nl_msg *msg;
if ((err = xfrmnl_sa_build_add_request(tmpl, flags, &msg)) < 0)
return err;
err = nl_send_auto_complete(sk, msg);
nlmsg_free(msg);
if (err < 0)
return err;
return nl_wait_for_ack(sk);
}
/**
* @name XFRM SA Update
* @{
*/
int xfrmnl_sa_build_update_request(struct xfrmnl_sa* tmpl, int flags, struct nl_msg **result)
{
return build_xfrm_sa_message (tmpl, XFRM_MSG_UPDSA, flags, result);
}
int xfrmnl_sa_update(struct nl_sock* sk, struct xfrmnl_sa* tmpl, int flags)
{
int err;
struct nl_msg *msg;
if ((err = xfrmnl_sa_build_update_request(tmpl, flags, &msg)) < 0)
return err;
err = nl_send_auto_complete(sk, msg);
nlmsg_free(msg);
if (err < 0)
return err;
return nl_wait_for_ack(sk);
}
/** @} */
static int build_xfrm_sa_delete_message(struct xfrmnl_sa *tmpl, int cmd, int flags, struct nl_msg **result)
{
struct nl_msg* msg;
struct xfrm_usersa_id sa_id;
if (!(tmpl->ce_mask & XFRM_SA_ATTR_DADDR) ||
!(tmpl->ce_mask & XFRM_SA_ATTR_SPI) ||
!(tmpl->ce_mask & XFRM_SA_ATTR_PROTO))
return -NLE_MISSING_ATTR;
memset(&sa_id, 0, sizeof(struct xfrm_usersa_id));
memcpy (&sa_id.daddr, nl_addr_get_binary_addr (tmpl->id.daddr),
sizeof (uint8_t) * nl_addr_get_len (tmpl->id.daddr));
sa_id.family = nl_addr_get_family (tmpl->id.daddr);
sa_id.spi = htonl(tmpl->id.spi);
sa_id.proto = tmpl->id.proto;
msg = nlmsg_alloc_simple(cmd, flags);
if (!msg)
return -NLE_NOMEM;
if (nlmsg_append(msg, &sa_id, sizeof(sa_id), NLMSG_ALIGNTO) < 0)
goto nla_put_failure;
if (tmpl->ce_mask & XFRM_SA_ATTR_MARK) {
NLA_PUT (msg, XFRMA_MARK, sizeof (struct xfrm_mark), &tmpl->mark);
}
*result = msg;
return 0;
nla_put_failure:
nlmsg_free(msg);
return -NLE_MSGSIZE;
}
/**
* @name XFRM SA Delete
* @{
*/
int xfrmnl_sa_build_delete_request(struct xfrmnl_sa* tmpl, int flags, struct nl_msg **result)
{
return build_xfrm_sa_delete_message (tmpl, XFRM_MSG_DELSA, flags, result);
}
int xfrmnl_sa_delete(struct nl_sock* sk, struct xfrmnl_sa* tmpl, int flags)
{
int err;
struct nl_msg *msg;
if ((err = xfrmnl_sa_build_delete_request(tmpl, flags, &msg)) < 0)
return err;
err = nl_send_auto_complete(sk, msg);
nlmsg_free(msg);
if (err < 0)
return err;
return nl_wait_for_ack(sk);
}
/** @} */
/**
* @name Attributes
* @{
*/
struct xfrmnl_sel* xfrmnl_sa_get_sel (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_SEL)
return sa->sel;
else
return NULL;
}
int xfrmnl_sa_set_sel (struct xfrmnl_sa* sa, struct xfrmnl_sel* sel)
{
/* Release any previously held selector object from the SA */
if (sa->sel)
xfrmnl_sel_put (sa->sel);
/* Increment ref count on new selector and save it in the SA */
xfrmnl_sel_get (sel);
sa->sel = sel;
sa->ce_mask |= XFRM_SA_ATTR_SEL;
return 0;
}
static inline int __assign_addr(struct xfrmnl_sa* sa, struct nl_addr **pos,
struct nl_addr *new, int flag, int nocheck)
{
if (!nocheck)
{
if (sa->ce_mask & XFRM_SA_ATTR_FAMILY)
{
if (nl_addr_get_family (new) != sa->family)
return -NLE_AF_MISMATCH;
}
}
if (*pos)
nl_addr_put(*pos);
nl_addr_get(new);
*pos = new;
sa->ce_mask |= flag;
return 0;
}
struct nl_addr* xfrmnl_sa_get_daddr (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_DADDR)
return sa->id.daddr;
else
return NULL;
}
int xfrmnl_sa_set_daddr (struct xfrmnl_sa* sa, struct nl_addr* addr)
{
return __assign_addr(sa, &sa->id.daddr, addr, XFRM_SA_ATTR_DADDR, 0);
}
int xfrmnl_sa_get_spi (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_SPI)
return sa->id.spi;
else
return -1;
}
int xfrmnl_sa_set_spi (struct xfrmnl_sa* sa, unsigned int spi)
{
sa->id.spi = spi;
sa->ce_mask |= XFRM_SA_ATTR_SPI;
return 0;
}
int xfrmnl_sa_get_proto (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_PROTO)
return sa->id.proto;
else
return -1;
}
int xfrmnl_sa_set_proto (struct xfrmnl_sa* sa, unsigned int protocol)
{
sa->id.proto = protocol;
sa->ce_mask |= XFRM_SA_ATTR_PROTO;
return 0;
}
struct nl_addr* xfrmnl_sa_get_saddr (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_SADDR)
return sa->saddr;
else
return NULL;
}
int xfrmnl_sa_set_saddr (struct xfrmnl_sa* sa, struct nl_addr* addr)
{
return __assign_addr(sa, &sa->saddr, addr, XFRM_SA_ATTR_SADDR, 1);
}
struct xfrmnl_ltime_cfg* xfrmnl_sa_get_lifetime_cfg (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_LTIME_CFG)
return sa->lft;
else
return NULL;
}
int xfrmnl_sa_set_lifetime_cfg (struct xfrmnl_sa* sa, struct xfrmnl_ltime_cfg* ltime)
{
/* Release any previously held lifetime cfg object from the SA */
if (sa->lft)
xfrmnl_ltime_cfg_put (sa->lft);
/* Increment ref count on new lifetime object and save it in the SA */
xfrmnl_ltime_cfg_get (ltime);
sa->lft = ltime;
sa->ce_mask |= XFRM_SA_ATTR_LTIME_CFG;
return 0;
}
int xfrmnl_sa_get_curlifetime (struct xfrmnl_sa* sa, unsigned long long int* curr_bytes,
unsigned long long int* curr_packets, unsigned long long int* curr_add_time, unsigned long long int* curr_use_time)
{
if (sa == NULL || curr_bytes == NULL || curr_packets == NULL || curr_add_time == NULL || curr_use_time == NULL)
return -1;
if (sa->ce_mask & XFRM_SA_ATTR_LTIME_CUR)
{
*curr_bytes = sa->curlft.bytes;
*curr_packets = sa->curlft.packets;
*curr_add_time = sa->curlft.add_time;
*curr_use_time = sa->curlft.use_time;
}
else
return -1;
return 0;
}
int xfrmnl_sa_get_stats (struct xfrmnl_sa* sa, unsigned long long int* replay_window,
unsigned long long int* replay, unsigned long long int* integrity_failed)
{
if (sa == NULL || replay_window == NULL || replay == NULL || integrity_failed == NULL)
return -1;
if (sa->ce_mask & XFRM_SA_ATTR_STATS)
{
*replay_window = sa->stats.replay_window;
*replay = sa->stats.replay;
*integrity_failed = sa->stats.integrity_failed;
}
else
return -1;
return 0;
}
int xfrmnl_sa_get_seq (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_SEQ)
return sa->seq;
else
return -1;
}
int xfrmnl_sa_get_reqid (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_REQID)
return sa->reqid;
else
return -1;
}
int xfrmnl_sa_set_reqid (struct xfrmnl_sa* sa, unsigned int reqid)
{
sa->reqid = reqid;
sa->ce_mask |= XFRM_SA_ATTR_REQID;
return 0;
}
int xfrmnl_sa_get_family (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_FAMILY)
return sa->family;
else
return -1;
}
int xfrmnl_sa_set_family (struct xfrmnl_sa* sa, unsigned int family)
{
sa->family = family;
sa->ce_mask |= XFRM_SA_ATTR_FAMILY;
return 0;
}
int xfrmnl_sa_get_mode (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_MODE)
return sa->mode;
else
return -1;
}
int xfrmnl_sa_set_mode (struct xfrmnl_sa* sa, unsigned int mode)
{
sa->mode = mode;
sa->ce_mask |= XFRM_SA_ATTR_MODE;
return 0;
}
int xfrmnl_sa_get_replay_window (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_WIN)
return sa->replay_window;
else
return -1;
}
int xfrmnl_sa_set_replay_window (struct xfrmnl_sa* sa, unsigned int replay_window)
{
sa->replay_window = replay_window;
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_WIN;
return 0;
}
int xfrmnl_sa_get_flags (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_FLAGS)
return sa->flags;
else
return -1;
}
int xfrmnl_sa_set_flags (struct xfrmnl_sa* sa, unsigned int flags)
{
sa->flags = flags;
sa->ce_mask |= XFRM_SA_ATTR_FLAGS;
return 0;
}
/**
* Get the aead-params
* @arg sa the xfrmnl_sa object
* @arg alg_name an optional output buffer for the algorithm name. Must be at least 64 bytes.
* @arg key_len an optional output value for the key length in bits.
* @arg icv_len an optional output value for the alt-icv-len.
* @arg key an optional buffer large enough for the key. It must contain at least
* ((@key_len + 7) / 8) bytes.
*
* Warning: you must ensure that @key is large enough. If you don't know the key_len before-hand,
* call xfrmnl_sa_get_aead_params() without @key argument to query only the required buffer size.
* This modified API is available in all versions of libnl3 that support the capability
* @def NL_CAPABILITY_XFRM_SA_KEY_SIZE (@see nl_has_capability for further information).
*
* @return 0 on success or a negative error code.
*/
int xfrmnl_sa_get_aead_params (struct xfrmnl_sa* sa, char* alg_name, unsigned int* key_len, unsigned int* icv_len, char* key)
{
if (sa->ce_mask & XFRM_SA_ATTR_ALG_AEAD)
{
if (alg_name)
strcpy (alg_name, sa->aead->alg_name);
if (key_len)
*key_len = sa->aead->alg_key_len;
if (icv_len)
*icv_len = sa->aead->alg_icv_len;
if (key)
memcpy (key, sa->aead->alg_key, ((sa->aead->alg_key_len + 7)/8));
}
else
return -1;
return 0;
}
int xfrmnl_sa_set_aead_params (struct xfrmnl_sa* sa, const char* alg_name, unsigned int key_len, unsigned int icv_len, const char* key)
{
_nl_auto_free struct xfrmnl_algo_aead *b = NULL;
size_t keysize = sizeof (uint8_t) * ((key_len + 7)/8);
uint32_t newlen = sizeof (struct xfrmnl_algo_aead) + keysize;
/* Free up the old key and allocate memory to hold new key */
if (strlen (alg_name) >= sizeof (sa->aead->alg_name))
return -1;
if (!(b = calloc (1, newlen)))
return -1;
strcpy (b->alg_name, alg_name);
b->alg_key_len = key_len;
b->alg_icv_len = icv_len;
memcpy (b->alg_key, key, keysize);
free (sa->aead);
sa->aead = _nl_steal_pointer (&b);
sa->ce_mask |= XFRM_SA_ATTR_ALG_AEAD;
return 0;
}
/**
* Get the auth-params
* @arg sa the xfrmnl_sa object
* @arg alg_name an optional output buffer for the algorithm name. Must be at least 64 bytes.
* @arg key_len an optional output value for the key length in bits.
* @arg trunc_len an optional output value for the alg-trunc-len.
* @arg key an optional buffer large enough for the key. It must contain at least
* ((@key_len + 7) / 8) bytes.
*
* Warning: you must ensure that @key is large enough. If you don't know the key_len before-hand,
* call xfrmnl_sa_get_auth_params() without @key argument to query only the required buffer size.
* This modified API is available in all versions of libnl3 that support the capability
* @def NL_CAPABILITY_XFRM_SA_KEY_SIZE (@see nl_has_capability for further information).
*
* @return 0 on success or a negative error code.
*/
int xfrmnl_sa_get_auth_params (struct xfrmnl_sa* sa, char* alg_name, unsigned int* key_len, unsigned int* trunc_len, char* key)
{
if (!(sa->ce_mask & XFRM_SA_ATTR_ALG_AUTH))
return -NLE_MISSING_ATTR;
if (alg_name)
strcpy(alg_name, sa->auth->alg_name);
if (key_len)
*key_len = sa->auth->alg_key_len;
if (trunc_len)
*trunc_len = sa->auth->alg_trunc_len;
if (key)
memcpy(key, sa->auth->alg_key, (sa->auth->alg_key_len + 7) / 8);
return 0;
}
int xfrmnl_sa_set_auth_params (struct xfrmnl_sa* sa, const char* alg_name, unsigned int key_len, unsigned int trunc_len, const char* key)
{
_nl_auto_free struct xfrmnl_algo_auth *b = NULL;
size_t keysize = sizeof (uint8_t) * ((key_len + 7)/8);
uint32_t newlen = sizeof (struct xfrmnl_algo_auth) + keysize;
if (strlen (alg_name) >= sizeof (sa->auth->alg_name))
return -1;
if (!(b = calloc (1, newlen)))
return -1;
strcpy (b->alg_name, alg_name);
b->alg_key_len = key_len;
b->alg_trunc_len = trunc_len;
memcpy (b->alg_key, key, keysize);
free (sa->auth);
sa->auth = _nl_steal_pointer (&b);
sa->ce_mask |= XFRM_SA_ATTR_ALG_AUTH;
return 0;
}
/**
* Get the crypto-params
* @arg sa the xfrmnl_sa object
* @arg alg_name an optional output buffer for the algorithm name. Must be at least 64 bytes.
* @arg key_len an optional output value for the key length in bits.
* @arg key an optional buffer large enough for the key. It must contain at least
* ((@key_len + 7) / 8) bytes.
*
* Warning: you must ensure that @key is large enough. If you don't know the key_len before-hand,
* call xfrmnl_sa_get_crypto_params() without @key argument to query only the required buffer size.
* This modified API is available in all versions of libnl3 that support the capability
* @def NL_CAPABILITY_XFRM_SA_KEY_SIZE (@see nl_has_capability for further information).
*
* @return 0 on success or a negative error code.
*/
int xfrmnl_sa_get_crypto_params (struct xfrmnl_sa* sa, char* alg_name, unsigned int* key_len, char* key)
{
if (sa->ce_mask & XFRM_SA_ATTR_ALG_CRYPT)
{
if (alg_name)
strcpy (alg_name, sa->crypt->alg_name);
if (key_len)
*key_len = sa->crypt->alg_key_len;
if (key)
memcpy (key, sa->crypt->alg_key, ((sa->crypt->alg_key_len + 7)/8));
}
else
return -1;
return 0;
}
int xfrmnl_sa_set_crypto_params (struct xfrmnl_sa* sa, const char* alg_name, unsigned int key_len, const char* key)
{
_nl_auto_free struct xfrmnl_algo *b = NULL;
size_t keysize = sizeof (uint8_t) * ((key_len + 7)/8);
uint32_t newlen = sizeof (struct xfrmnl_algo) + keysize;
if (strlen (alg_name) >= sizeof (sa->crypt->alg_name))
return -1;
if (!(b = calloc (1, newlen)))
return -1;
strcpy (b->alg_name, alg_name);
b->alg_key_len = key_len;
memcpy (b->alg_key, key, keysize);
free(sa->crypt);
sa->crypt = _nl_steal_pointer(&b);
sa->ce_mask |= XFRM_SA_ATTR_ALG_CRYPT;
return 0;
}
/**
* Get the comp-params
* @arg sa the xfrmnl_sa object
* @arg alg_name an optional output buffer for the algorithm name. Must be at least 64 bytes.
* @arg key_len an optional output value for the key length in bits.
* @arg key an optional buffer large enough for the key. It must contain at least
* ((@key_len + 7) / 8) bytes.
*
* Warning: you must ensure that @key is large enough. If you don't know the key_len before-hand,
* call xfrmnl_sa_get_comp_params() without @key argument to query only the required buffer size.
* This modified API is available in all versions of libnl3 that support the capability
* @def NL_CAPABILITY_XFRM_SA_KEY_SIZE (@see nl_has_capability for further information).
*
* @return 0 on success or a negative error code.
*/
int xfrmnl_sa_get_comp_params (struct xfrmnl_sa* sa, char* alg_name, unsigned int* key_len, char* key)
{
if (sa->ce_mask & XFRM_SA_ATTR_ALG_COMP)
{
if (alg_name)
strcpy (alg_name, sa->comp->alg_name);
if (key_len)
*key_len = sa->comp->alg_key_len;
if (key)
memcpy (key, sa->comp->alg_key, ((sa->comp->alg_key_len + 7)/8));
}
else
return -1;
return 0;
}
int xfrmnl_sa_set_comp_params (struct xfrmnl_sa* sa, const char* alg_name, unsigned int key_len, const char* key)
{
_nl_auto_free struct xfrmnl_algo *b = NULL;
size_t keysize = sizeof (uint8_t) * ((key_len + 7)/8);
uint32_t newlen = sizeof (struct xfrmnl_algo) + keysize;
if (strlen (alg_name) >= sizeof (sa->comp->alg_name))
return -1;
if (!(b = calloc (1, newlen)))
return -1;
strcpy (b->alg_name, alg_name);
b->alg_key_len = key_len;
memcpy (b->alg_key, key, keysize);
free(sa->comp);
sa->comp = _nl_steal_pointer(&b);
sa->ce_mask |= XFRM_SA_ATTR_ALG_COMP;
return 0;
}
int xfrmnl_sa_get_encap_tmpl (struct xfrmnl_sa* sa, unsigned int* encap_type, unsigned int* encap_sport, unsigned int* encap_dport, struct nl_addr** encap_oa)
{
if (sa->ce_mask & XFRM_SA_ATTR_ENCAP)
{
*encap_type = sa->encap->encap_type;
*encap_sport = sa->encap->encap_sport;
*encap_dport = sa->encap->encap_dport;
*encap_oa = nl_addr_clone (sa->encap->encap_oa);
}
else
return -1;
return 0;
}
int xfrmnl_sa_set_encap_tmpl (struct xfrmnl_sa* sa, unsigned int encap_type, unsigned int encap_sport, unsigned int encap_dport, struct nl_addr* encap_oa)
{
if (sa->encap) {
/* Free up the old encap OA */
if (sa->encap->encap_oa)
nl_addr_put(sa->encap->encap_oa);
memset(sa->encap, 0, sizeof (*sa->encap));
} else if ((sa->encap = calloc(1, sizeof(*sa->encap))) == NULL)
return -1;
/* Save the new info */
sa->encap->encap_type = encap_type;
sa->encap->encap_sport = encap_sport;
sa->encap->encap_dport = encap_dport;
nl_addr_get (encap_oa);
sa->encap->encap_oa = encap_oa;
sa->ce_mask |= XFRM_SA_ATTR_ENCAP;
return 0;
}
int xfrmnl_sa_get_tfcpad (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_TFCPAD)
return sa->tfcpad;
else
return -1;
}
int xfrmnl_sa_set_tfcpad (struct xfrmnl_sa* sa, unsigned int tfcpad)
{
sa->tfcpad = tfcpad;
sa->ce_mask |= XFRM_SA_ATTR_TFCPAD;
return 0;
}
struct nl_addr* xfrmnl_sa_get_coaddr (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_COADDR)
return sa->coaddr;
else
return NULL;
}
int xfrmnl_sa_set_coaddr (struct xfrmnl_sa* sa, struct nl_addr* coaddr)
{
/* Free up the old coaddr */
if (sa->coaddr)
nl_addr_put (sa->coaddr);
/* Save the new info */
nl_addr_get (coaddr);
sa->coaddr = coaddr;
sa->ce_mask |= XFRM_SA_ATTR_COADDR;
return 0;
}
int xfrmnl_sa_get_mark (struct xfrmnl_sa* sa, unsigned int* mark_mask, unsigned int* mark_value)
{
if (mark_mask == NULL || mark_value == NULL)
return -1;
if (sa->ce_mask & XFRM_SA_ATTR_MARK)
{
*mark_mask = sa->mark.m;
*mark_value = sa->mark.v;
return 0;
}
else
return -1;
}
int xfrmnl_sa_set_mark (struct xfrmnl_sa* sa, unsigned int value, unsigned int mask)
{
sa->mark.v = value;
sa->mark.m = mask;
sa->ce_mask |= XFRM_SA_ATTR_MARK;
return 0;
}
/**
* Get the security context.
*
* @arg sa The xfrmnl_sa object.
* @arg doi An optional output value for the security context domain of interpretation.
* @arg alg An optional output value for the security context algorithm.
* @arg len An optional output value for the security context length, including the
* terminating null byte ('\0').
* @arg sid Unused parameter.
* @arg ctx_str An optional buffer large enough for the security context string. It must
* contain at least @len bytes.
*
* Warning: you must ensure that @ctx_str is large enough. If you don't know the length before-hand,
* call xfrmnl_sa_get_sec_ctx() without @ctx_str argument to query only the required buffer size.
* This modified API is available in all versions of libnl3 that support the capability
* @def NL_CAPABILITY_XFRM_SEC_CTX_LEN (@see nl_has_capability for further information).
*
* @return 0 on success or a negative error code.
*/
int xfrmnl_sa_get_sec_ctx (struct xfrmnl_sa* sa, unsigned int* doi, unsigned int* alg,
unsigned int* len, unsigned int* sid, char* ctx_str)
{
if (sa->ce_mask & XFRM_SA_ATTR_SECCTX)
{
if (doi)
*doi = sa->sec_ctx->ctx_doi;
if (alg)
*alg = sa->sec_ctx->ctx_alg;
if (len)
*len = sa->sec_ctx->ctx_len;
if (ctx_str)
memcpy (ctx_str, sa->sec_ctx->ctx, sa->sec_ctx->ctx_len);
}
else
return -1;
return 0;
}
/**
* Set the security context.
*
* @arg sa The xfrmnl_sa object.
* @arg doi Parameter for the security context domain of interpretation.
* @arg alg Parameter for the security context algorithm.
* @arg len Parameter for the length of the security context string containing
* the terminating null byte ('\0').
* @arg sid Unused parameter.
* @arg ctx_str Buffer containing the security context string.
*
* @return 0 on success or a negative error code.
*/
int xfrmnl_sa_set_sec_ctx (struct xfrmnl_sa* sa, unsigned int doi, unsigned int alg, unsigned int len,
unsigned int sid, const char* ctx_str)
{
_nl_auto_free struct xfrmnl_user_sec_ctx *b = NULL;
if (!(b = calloc(1, sizeof (struct xfrmnl_user_sec_ctx) + 1 + len)))
return -1;
b->len = sizeof(struct xfrmnl_user_sec_ctx) + len;
b->exttype = XFRMA_SEC_CTX;
b->ctx_alg = alg;
b->ctx_doi = doi;
b->ctx_len = len;
memcpy (b->ctx, ctx_str, len);
b->ctx[len] = '\0';
free(sa->sec_ctx);
sa->sec_ctx = _nl_steal_pointer(&b);
sa->ce_mask |= XFRM_SA_ATTR_SECCTX;
return 0;
}
int xfrmnl_sa_get_replay_maxage (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_MAXAGE)
return sa->replay_maxage;
else
return -1;
}
int xfrmnl_sa_set_replay_maxage (struct xfrmnl_sa* sa, unsigned int replay_maxage)
{
sa->replay_maxage = replay_maxage;
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_MAXAGE;
return 0;
}
int xfrmnl_sa_get_replay_maxdiff (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_MAXDIFF)
return sa->replay_maxdiff;
else
return -1;
}
int xfrmnl_sa_set_replay_maxdiff (struct xfrmnl_sa* sa, unsigned int replay_maxdiff)
{
sa->replay_maxdiff = replay_maxdiff;
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_MAXDIFF;
return 0;
}
int xfrmnl_sa_get_replay_state (struct xfrmnl_sa* sa, unsigned int* oseq, unsigned int* seq, unsigned int* bmp)
{
if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_STATE)
{
if (sa->replay_state_esn == NULL)
{
*oseq = sa->replay_state.oseq;
*seq = sa->replay_state.seq;
*bmp = sa->replay_state.bitmap;
return 0;
}
else
{
return -1;
}
}
else
return -1;
}
int xfrmnl_sa_set_replay_state (struct xfrmnl_sa* sa, unsigned int oseq, unsigned int seq, unsigned int bitmap)
{
sa->replay_state.oseq = oseq;
sa->replay_state.seq = seq;
sa->replay_state.bitmap = bitmap;
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_STATE;
return 0;
}
int xfrmnl_sa_get_replay_state_esn (struct xfrmnl_sa* sa, unsigned int* oseq, unsigned int* seq, unsigned int* oseq_hi,
unsigned int* seq_hi, unsigned int* replay_window, unsigned int* bmp_len, unsigned int* bmp)
{
if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_STATE)
{
if (sa->replay_state_esn)
{
*oseq = sa->replay_state_esn->oseq;
*seq = sa->replay_state_esn->seq;
*oseq_hi= sa->replay_state_esn->oseq_hi;
*seq_hi = sa->replay_state_esn->seq_hi;
*replay_window = sa->replay_state_esn->replay_window;
*bmp_len = sa->replay_state_esn->bmp_len; // In number of 32 bit words
memcpy (bmp, sa->replay_state_esn->bmp, sa->replay_state_esn->bmp_len * sizeof (uint32_t));
return 0;
}
else
{
return -1;
}
}
else
return -1;
}
int xfrmnl_sa_set_replay_state_esn (struct xfrmnl_sa* sa, unsigned int oseq, unsigned int seq,
unsigned int oseq_hi, unsigned int seq_hi, unsigned int replay_window,
unsigned int bmp_len, unsigned int* bmp)
{
_nl_auto_free struct xfrmnl_replay_state_esn *b = NULL;
if (!(b = calloc (1, sizeof (struct xfrmnl_replay_state_esn) + (sizeof (uint32_t) * bmp_len))))
return -1;
b->oseq = oseq;
b->seq = seq;
b->oseq_hi = oseq_hi;
b->seq_hi = seq_hi;
b->replay_window = replay_window;
b->bmp_len = bmp_len; // In number of 32 bit words
memcpy (b->bmp, bmp, bmp_len * sizeof (uint32_t));
free(sa->replay_state_esn);
sa->replay_state_esn = _nl_steal_pointer(&b);
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_STATE;
return 0;
}
/**
* Get interface id and flags from xfrm_user_offload.
*
* @arg sa The xfrmnl_sa object.
* @arg ifindex An optional output value for the offload interface index.
* @arg flags An optional output value for the offload flags.
*
* @return 0 on success or a negative error code.
*/
int xfrmnl_sa_get_user_offload(struct xfrmnl_sa *sa, int *ifindex, uint8_t *flags)
{
int ret = -1;
if (sa->ce_mask & XFRM_SA_ATTR_OFFLOAD_DEV && sa->user_offload) {
if (ifindex)
*ifindex = sa->user_offload->ifindex;
if (flags)
*flags = sa->user_offload->flags;
ret = 0;
}
return ret;
}
/**
* Set interface id and flags for xfrm_user_offload.
*
* @arg sa The xfrmnl_sa object.
* @arg ifindex Id of the offload interface.
* @arg flags Offload flags for the state.
*
* @return 0 on success or a negative error code.
*/
int xfrmnl_sa_set_user_offload(struct xfrmnl_sa *sa, int ifindex, uint8_t flags)
{
_nl_auto_free struct xfrmnl_user_offload *b = NULL;
if (!(b = calloc(1, sizeof(*b))))
return -1;
b->ifindex = ifindex;
b->flags = flags;
free(sa->user_offload);
sa->user_offload = _nl_steal_pointer(&b);
sa->ce_mask |= XFRM_SA_ATTR_OFFLOAD_DEV;
return 0;
}
int xfrmnl_sa_is_hardexpiry_reached (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_EXPIRE)
return (sa->hard > 0 ? 1: 0);
else
return 0;
}
int xfrmnl_sa_is_expiry_reached (struct xfrmnl_sa* sa)
{
if (sa->ce_mask & XFRM_SA_ATTR_EXPIRE)
return 1;
else
return 0;
}
/** @} */
static struct nl_object_ops xfrm_sa_obj_ops = {
.oo_name = "xfrm/sa",
.oo_size = sizeof(struct xfrmnl_sa),
.oo_constructor = xfrm_sa_alloc_data,
.oo_free_data = xfrm_sa_free_data,
.oo_clone = xfrm_sa_clone,
.oo_dump = {
[NL_DUMP_LINE] = xfrm_sa_dump_line,
[NL_DUMP_DETAILS] = xfrm_sa_dump_details,
[NL_DUMP_STATS] = xfrm_sa_dump_stats,
},
.oo_compare = xfrm_sa_compare,
.oo_attrs2str = xfrm_sa_attrs2str,
.oo_id_attrs = (XFRM_SA_ATTR_DADDR | XFRM_SA_ATTR_SPI | XFRM_SA_ATTR_PROTO),
};
static struct nl_af_group xfrm_sa_groups[] = {
{ AF_UNSPEC, XFRMNLGRP_SA },
{ AF_UNSPEC, XFRMNLGRP_EXPIRE },
{ END_OF_GROUP_LIST },
};
static struct nl_cache_ops xfrmnl_sa_ops = {
.co_name = "xfrm/sa",
.co_hdrsize = sizeof(struct xfrm_usersa_info),
.co_msgtypes = {
{ XFRM_MSG_NEWSA, NL_ACT_NEW, "new" },
{ XFRM_MSG_DELSA, NL_ACT_DEL, "del" },
{ XFRM_MSG_GETSA, NL_ACT_GET, "get" },
{ XFRM_MSG_EXPIRE, NL_ACT_UNSPEC, "expire"},
{ XFRM_MSG_UPDSA, NL_ACT_NEW, "update"},
END_OF_MSGTYPES_LIST,
},
.co_protocol = NETLINK_XFRM,
.co_groups = xfrm_sa_groups,
.co_request_update = xfrm_sa_request_update,
.co_msg_parser = xfrm_sa_msg_parser,
.co_obj_ops = &xfrm_sa_obj_ops,
.co_include_event = &xfrm_sa_update_cache
};
/**
* @name XFRM SA Cache Managament
* @{
*/
static void __attribute__ ((constructor)) xfrm_sa_init(void)
{
nl_cache_mngt_register(&xfrmnl_sa_ops);
}
static void __attribute__ ((destructor)) xfrm_sa_exit(void)
{
nl_cache_mngt_unregister(&xfrmnl_sa_ops);
}
/** @} */