blob: 2dafac54094b1e5070124acc776c5795dd1d1232 [file] [log] [blame]
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/task/thread_pool/thread_group_impl.h"
#include <stddef.h>
#include <algorithm>
#include <type_traits>
#include <utility>
#include "base/atomicops.h"
#include "base/auto_reset.h"
#include "base/compiler_specific.h"
#include "base/feature_list.h"
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "base/location.h"
#include "base/memory/ptr_util.h"
#include "base/memory/raw_ptr.h"
#include "base/metrics/histogram_macros.h"
#include "base/numerics/clamped_math.h"
#include "base/ranges/algorithm.h"
#include "base/sequence_token.h"
#include "base/strings/string_piece.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/waitable_event.h"
#include "base/task/task_features.h"
#include "base/task/task_traits.h"
#include "base/task/thread_pool/task_tracker.h"
#include "base/task/thread_pool/worker_thread_waitable_event.h"
#include "base/threading/platform_thread.h"
#include "base/threading/scoped_blocking_call.h"
#include "base/threading/scoped_blocking_call_internal.h"
#include "base/threading/thread_checker.h"
#include "base/threading/thread_restrictions.h"
#include "base/time/time_override.h"
#include "build/build_config.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#if BUILDFLAG(IS_WIN)
#include "base/win/scoped_com_initializer.h"
#include "base/win/scoped_windows_thread_environment.h"
#include "base/win/scoped_winrt_initializer.h"
#include "base/win/windows_version.h"
#endif // BUILDFLAG(IS_WIN)
namespace base {
namespace internal {
namespace {
constexpr size_t kMaxNumberOfWorkers = 256;
// In a background thread group:
// - Blocking calls take more time than in a foreground thread group.
// - We want to minimize impact on foreground work, not maximize execution
// throughput.
// For these reasons, the timeout to increase the maximum number of concurrent
// tasks when there is a MAY_BLOCK ScopedBlockingCall is *long*. It is not
// infinite because execution throughput should not be reduced forever if a task
// blocks forever.
//
// TODO(fdoray): On platforms without background thread groups, blocking in a
// BEST_EFFORT task should:
// 1. Increment the maximum number of concurrent tasks after a *short* timeout,
// to allow scheduling of USER_VISIBLE/USER_BLOCKING tasks.
// 2. Increment the maximum number of concurrent BEST_EFFORT tasks after a
// *long* timeout, because we only want to allow more BEST_EFFORT tasks to be
// be scheduled concurrently when we believe that a BEST_EFFORT task is
// blocked forever.
// Currently, only 1. is true as the configuration is per thread group.
// TODO(https://crbug.com/927755): Fix racy condition when MayBlockThreshold ==
// BlockedWorkersPoll.
constexpr TimeDelta kForegroundMayBlockThreshold = Milliseconds(1000);
constexpr TimeDelta kForegroundBlockedWorkersPoll = Milliseconds(1200);
constexpr TimeDelta kBackgroundMayBlockThreshold = Seconds(10);
constexpr TimeDelta kBackgroundBlockedWorkersPoll = Seconds(12);
// Only used in DCHECKs.
bool ContainsWorker(
const std::vector<scoped_refptr<WorkerThreadWaitableEvent>>& workers,
const WorkerThreadWaitableEvent* worker) {
auto it = ranges::find_if(
workers, [worker](const scoped_refptr<WorkerThreadWaitableEvent>& i) {
return i.get() == worker;
});
return it != workers.end();
}
} // namespace
// Upon destruction, executes actions that control the number of active workers.
// Useful to satisfy locking requirements of these actions.
class ThreadGroupImpl::ScopedCommandsExecutor
: public ThreadGroup::BaseScopedCommandsExecutor {
public:
explicit ScopedCommandsExecutor(ThreadGroupImpl* outer) : outer_(outer) {}
ScopedCommandsExecutor(const ScopedCommandsExecutor&) = delete;
ScopedCommandsExecutor& operator=(const ScopedCommandsExecutor&) = delete;
~ScopedCommandsExecutor() { FlushImpl(); }
void ScheduleWakeUp(scoped_refptr<WorkerThreadWaitableEvent> worker) {
workers_to_wake_up_.AddWorker(std::move(worker));
}
void ScheduleStart(scoped_refptr<WorkerThreadWaitableEvent> worker) {
workers_to_start_.AddWorker(std::move(worker));
}
void FlushWorkerCreation(CheckedLock* held_lock) {
if (workers_to_wake_up_.empty() && workers_to_start_.empty())
return;
CheckedAutoUnlock auto_unlock(*held_lock);
FlushImpl();
workers_to_wake_up_.clear();
workers_to_start_.clear();
must_schedule_adjust_max_tasks_ = false;
}
void ScheduleAdjustMaxTasks() {
DCHECK(!must_schedule_adjust_max_tasks_);
must_schedule_adjust_max_tasks_ = true;
}
private:
class WorkerContainer {
public:
WorkerContainer() = default;
WorkerContainer(const WorkerContainer&) = delete;
WorkerContainer& operator=(const WorkerContainer&) = delete;
void AddWorker(scoped_refptr<WorkerThreadWaitableEvent> worker) {
if (!worker)
return;
if (!first_worker_)
first_worker_ = std::move(worker);
else
additional_workers_.push_back(std::move(worker));
}
template <typename Action>
void ForEachWorker(Action action) {
if (first_worker_) {
action(first_worker_.get());
for (scoped_refptr<WorkerThreadWaitableEvent> worker :
additional_workers_) {
action(worker.get());
}
} else {
DCHECK(additional_workers_.empty());
}
}
bool empty() const { return first_worker_ == nullptr; }
void clear() {
first_worker_.reset();
additional_workers_.clear();
}
private:
// The purpose of |first_worker| is to avoid a heap allocation by the vector
// in the case where there is only one worker in the container.
scoped_refptr<WorkerThreadWaitableEvent> first_worker_;
std::vector<scoped_refptr<WorkerThreadWaitableEvent>> additional_workers_;
};
void FlushImpl() {
CheckedLock::AssertNoLockHeldOnCurrentThread();
// Wake up workers.
workers_to_wake_up_.ForEachWorker(
[](WorkerThreadWaitableEvent* worker) { worker->WakeUp(); });
// Start workers. Happens after wake ups to prevent the case where a worker
// enters its main function, is descheduled because it wasn't woken up yet,
// and is woken up immediately after.
workers_to_start_.ForEachWorker([&](WorkerThreadWaitableEvent* worker) {
worker->Start(outer_->after_start().service_thread_task_runner,
outer_->after_start().worker_thread_observer);
if (outer_->worker_started_for_testing_)
outer_->worker_started_for_testing_->Wait();
});
if (must_schedule_adjust_max_tasks_)
outer_->ScheduleAdjustMaxTasks();
}
const raw_ptr<ThreadGroupImpl> outer_;
WorkerContainer workers_to_wake_up_;
WorkerContainer workers_to_start_;
bool must_schedule_adjust_max_tasks_ = false;
};
class ThreadGroupImpl::WorkerThreadDelegateImpl
: public WorkerThreadWaitableEvent::Delegate,
public BlockingObserver {
public:
// |outer| owns the worker for which this delegate is constructed. If
// |is_excess| is true, this worker will be eligible for reclaim.
explicit WorkerThreadDelegateImpl(TrackedRef<ThreadGroupImpl> outer,
bool is_excess);
WorkerThreadDelegateImpl(const WorkerThreadDelegateImpl&) = delete;
WorkerThreadDelegateImpl& operator=(const WorkerThreadDelegateImpl&) = delete;
// OnMainExit() handles the thread-affine cleanup; WorkerThreadDelegateImpl
// can thereafter safely be deleted from any thread.
~WorkerThreadDelegateImpl() override = default;
// WorkerThreadWaitableEvent::Delegate:
WorkerThread::ThreadLabel GetThreadLabel() const override;
void OnMainEntry(WorkerThread* worker) override;
RegisteredTaskSource GetWork(WorkerThread* worker) override;
RegisteredTaskSource SwapProcessedTask(RegisteredTaskSource task_source,
WorkerThread* worker) override;
TimeDelta GetSleepTimeout() override;
void OnMainExit(WorkerThread* worker) override;
void RecordUnnecessaryWakeup() override;
// BlockingObserver:
void BlockingStarted(BlockingType blocking_type) override;
void BlockingTypeUpgraded() override;
void BlockingEnded() override;
// Notifies the worker of shutdown, possibly marking the running task as
// MAY_BLOCK.
void OnShutdownStartedLockRequired(ScopedCommandsExecutor* executor)
EXCLUSIVE_LOCKS_REQUIRED(outer_->lock_);
// Returns true iff the worker can get work. Cleans up the worker or puts it
// on the idle set if it can't get work.
bool CanGetWorkLockRequired(ScopedCommandsExecutor* executor,
WorkerThreadWaitableEvent* worker)
EXCLUSIVE_LOCKS_REQUIRED(outer_->lock_);
// Increments max [best effort] tasks iff this worker has been within a
// ScopedBlockingCall for more than |may_block_threshold|.
void MaybeIncrementMaxTasksLockRequired()
EXCLUSIVE_LOCKS_REQUIRED(outer_->lock_);
// Increments max [best effort] tasks.
void IncrementMaxTasksLockRequired() EXCLUSIVE_LOCKS_REQUIRED(outer_->lock_);
TaskPriority current_task_priority_lock_required() const
EXCLUSIVE_LOCKS_REQUIRED(outer_->lock_) {
return *read_any().current_task_priority;
}
// True if this worker is be eligible for reclaim.
bool is_excess() const { return is_excess_; }
// Exposed for AnnotateAcquiredLockAlias
const CheckedLock& lock() const LOCK_RETURNED(outer_->lock_) {
return outer_->lock_;
}
private:
// Returns true if |worker| is allowed to cleanup and remove itself from the
// thread group. Called from GetWork() when no work is available.
bool CanCleanupLockRequired(const WorkerThreadWaitableEvent* worker) const
EXCLUSIVE_LOCKS_REQUIRED(outer_->lock_);
// Calls cleanup on |worker| and removes it from the thread group. Called from
// GetWork() when no work is available and CanCleanupLockRequired() returns
// true.
void CleanupLockRequired(ScopedCommandsExecutor* executor,
WorkerThreadWaitableEvent* worker)
EXCLUSIVE_LOCKS_REQUIRED(outer_->lock_);
// Called in GetWork() when a worker becomes idle.
void OnWorkerBecomesIdleLockRequired(ScopedCommandsExecutor* executor,
WorkerThreadWaitableEvent* worker)
EXCLUSIVE_LOCKS_REQUIRED(outer_->lock_);
RegisteredTaskSource GetWorkLockRequired(ScopedCommandsExecutor* executor,
WorkerThreadWaitableEvent* worker)
EXCLUSIVE_LOCKS_REQUIRED(outer_->lock_);
// Accessed only from the worker thread.
struct WorkerOnly {
// Associated WorkerThread, if any, initialized in OnMainEntry().
raw_ptr<WorkerThreadWaitableEvent> worker_thread_;
#if BUILDFLAG(IS_WIN)
std::unique_ptr<win::ScopedWindowsThreadEnvironment> win_thread_environment;
#endif // BUILDFLAG(IS_WIN)
} worker_only_;
// Writes from the worker thread protected by |outer_->lock_|. Reads from any
// thread, protected by |outer_->lock_| when not on the worker thread.
struct WriteWorkerReadAny {
// The priority of the task the worker is currently running if any.
absl::optional<TaskPriority> current_task_priority;
// The shutdown behavior of the task the worker is currently running if any.
absl::optional<TaskShutdownBehavior> current_shutdown_behavior;
// Time when MayBlockScopeEntered() was last called. Reset when
// BlockingScopeExited() is called.
TimeTicks blocking_start_time;
// Whether the worker is currently running a task (i.e. GetWork() has
// returned a non-empty task source and SwapProcessedTask() hasn't been
// called yet).
bool is_running_task() const { return !!current_shutdown_behavior; }
} write_worker_read_any_;
WorkerOnly& worker_only() {
DCHECK_CALLED_ON_VALID_THREAD(worker_thread_checker_);
return worker_only_;
}
WriteWorkerReadAny& write_worker() EXCLUSIVE_LOCKS_REQUIRED(outer_->lock_) {
DCHECK_CALLED_ON_VALID_THREAD(worker_thread_checker_);
return write_worker_read_any_;
}
const WriteWorkerReadAny& read_any() const
EXCLUSIVE_LOCKS_REQUIRED(outer_->lock_) {
return write_worker_read_any_;
}
const WriteWorkerReadAny& read_worker() const {
DCHECK_CALLED_ON_VALID_THREAD(worker_thread_checker_);
return write_worker_read_any_;
}
const TrackedRef<ThreadGroupImpl> outer_;
const bool is_excess_;
// Whether |outer_->max_tasks_|/|outer_->max_best_effort_tasks_| were
// incremented due to a ScopedBlockingCall on the thread.
bool incremented_max_tasks_since_blocked_ GUARDED_BY(outer_->lock_) = false;
bool incremented_max_best_effort_tasks_since_blocked_
GUARDED_BY(outer_->lock_) = false;
// Whether |outer_->max_tasks_| and |outer_->max_best_effort_tasks_| was
// incremented due to running CONTINUE_ON_SHUTDOWN on the thread during
// shutdown.
bool incremented_max_tasks_for_shutdown_ GUARDED_BY(outer_->lock_) = false;
// Verifies that specific calls are always made from the worker thread.
THREAD_CHECKER(worker_thread_checker_);
};
ThreadGroupImpl::ThreadGroupImpl(StringPiece histogram_label,
StringPiece thread_group_label,
ThreadType thread_type_hint,
TrackedRef<TaskTracker> task_tracker,
TrackedRef<Delegate> delegate)
: ThreadGroup(std::move(task_tracker), std::move(delegate)),
histogram_label_(histogram_label),
thread_group_label_(thread_group_label),
thread_type_hint_(thread_type_hint),
idle_workers_set_cv_for_testing_(lock_.CreateConditionVariable()),
tracked_ref_factory_(this) {
DCHECK(!thread_group_label_.empty());
}
void ThreadGroupImpl::Start(
size_t max_tasks,
size_t max_best_effort_tasks,
TimeDelta suggested_reclaim_time,
scoped_refptr<SingleThreadTaskRunner> service_thread_task_runner,
WorkerThreadObserver* worker_thread_observer,
WorkerEnvironment worker_environment,
bool synchronous_thread_start_for_testing,
absl::optional<TimeDelta> may_block_threshold) {
ThreadGroup::Start();
DCHECK(!replacement_thread_group_);
in_start().no_worker_reclaim = FeatureList::IsEnabled(kNoWorkerThreadReclaim);
in_start().may_block_threshold =
may_block_threshold ? may_block_threshold.value()
: (thread_type_hint_ != ThreadType::kBackground
? kForegroundMayBlockThreshold
: kBackgroundMayBlockThreshold);
in_start().blocked_workers_poll_period =
thread_type_hint_ != ThreadType::kBackground
? kForegroundBlockedWorkersPoll
: kBackgroundBlockedWorkersPoll;
in_start().ensure_enough_workers_at_end_of_get_work =
base::FeatureList::IsEnabled(kUseNewJobImplementation);
ScopedCommandsExecutor executor(this);
CheckedAutoLock auto_lock(lock_);
DCHECK(workers_.empty());
max_tasks_ = max_tasks;
DCHECK_GE(max_tasks_, 1U);
in_start().initial_max_tasks = max_tasks_;
DCHECK_LE(in_start().initial_max_tasks, kMaxNumberOfWorkers);
max_best_effort_tasks_ = max_best_effort_tasks;
in_start().suggested_reclaim_time = suggested_reclaim_time;
in_start().worker_environment = worker_environment;
in_start().service_thread_task_runner = std::move(service_thread_task_runner);
in_start().worker_thread_observer = worker_thread_observer;
#if DCHECK_IS_ON()
in_start().initialized = true;
#endif
if (synchronous_thread_start_for_testing) {
worker_started_for_testing_.emplace(WaitableEvent::ResetPolicy::AUTOMATIC);
// Don't emit a ScopedBlockingCallWithBaseSyncPrimitives from this
// WaitableEvent or it defeats the purpose of having threads start without
// externally visible side-effects.
worker_started_for_testing_->declare_only_used_while_idle();
}
EnsureEnoughWorkersLockRequired(&executor);
}
ThreadGroupImpl::~ThreadGroupImpl() {
// ThreadGroup should only ever be deleted:
// 1) In tests, after JoinForTesting().
// 2) In production, iff initialization failed.
// In both cases |workers_| should be empty.
DCHECK(workers_.empty());
}
void ThreadGroupImpl::UpdateSortKey(TaskSource::Transaction transaction) {
ScopedCommandsExecutor executor(this);
UpdateSortKeyImpl(&executor, std::move(transaction));
}
void ThreadGroupImpl::PushTaskSourceAndWakeUpWorkers(
RegisteredTaskSourceAndTransaction transaction_with_task_source) {
ScopedCommandsExecutor executor(this);
PushTaskSourceAndWakeUpWorkersImpl(&executor,
std::move(transaction_with_task_source));
}
size_t ThreadGroupImpl::GetMaxConcurrentNonBlockedTasksDeprecated() const {
#if DCHECK_IS_ON()
CheckedAutoLock auto_lock(lock_);
DCHECK_NE(after_start().initial_max_tasks, 0U)
<< "GetMaxConcurrentTasksDeprecated() should only be called after the "
<< "thread group has started.";
#endif
return after_start().initial_max_tasks;
}
void ThreadGroupImpl::WaitForWorkersIdleForTesting(size_t n) {
CheckedAutoLock auto_lock(lock_);
#if DCHECK_IS_ON()
DCHECK(!some_workers_cleaned_up_for_testing_)
<< "Workers detached prior to waiting for a specific number of idle "
"workers. Doing the wait under such conditions is flaky. Consider "
"setting the suggested reclaim time to TimeDelta::Max() in Start().";
#endif
WaitForWorkersIdleLockRequiredForTesting(n);
}
void ThreadGroupImpl::WaitForAllWorkersIdleForTesting() {
CheckedAutoLock auto_lock(lock_);
WaitForWorkersIdleLockRequiredForTesting(workers_.size());
}
void ThreadGroupImpl::WaitForWorkersCleanedUpForTesting(size_t n) {
CheckedAutoLock auto_lock(lock_);
if (!num_workers_cleaned_up_for_testing_cv_)
num_workers_cleaned_up_for_testing_cv_ = lock_.CreateConditionVariable();
while (num_workers_cleaned_up_for_testing_ < n)
num_workers_cleaned_up_for_testing_cv_->Wait();
num_workers_cleaned_up_for_testing_ = 0;
}
void ThreadGroupImpl::JoinForTesting() {
decltype(workers_) workers_copy;
{
CheckedAutoLock auto_lock(lock_);
priority_queue_.EnableFlushTaskSourcesOnDestroyForTesting();
DCHECK_GT(workers_.size(), size_t(0))
<< "Joined an unstarted thread group.";
join_for_testing_started_ = true;
// Ensure WorkerThreads in |workers_| do not attempt to cleanup while
// being joined.
worker_cleanup_disallowed_for_testing_ = true;
// Make a copy of the WorkerThreads so that we can call
// WorkerThreadWaitableEvent::JoinForTesting() without holding |lock_| since
// WorkerThreads may need to access |workers_|.
workers_copy = workers_;
}
for (const auto& worker : workers_copy)
worker->JoinForTesting();
CheckedAutoLock auto_lock(lock_);
DCHECK(workers_ == workers_copy);
// Release |workers_| to clear their TrackedRef against |this|.
workers_.clear();
}
size_t ThreadGroupImpl::NumberOfWorkersForTesting() const {
CheckedAutoLock auto_lock(lock_);
return workers_.size();
}
size_t ThreadGroupImpl::GetMaxTasksForTesting() const {
CheckedAutoLock auto_lock(lock_);
return max_tasks_;
}
size_t ThreadGroupImpl::GetMaxBestEffortTasksForTesting() const {
CheckedAutoLock auto_lock(lock_);
return max_best_effort_tasks_;
}
size_t ThreadGroupImpl::NumberOfIdleWorkersForTesting() const {
CheckedAutoLock auto_lock(lock_);
return idle_workers_set_.Size();
}
ThreadGroupImpl::WorkerThreadDelegateImpl::WorkerThreadDelegateImpl(
TrackedRef<ThreadGroupImpl> outer,
bool is_excess)
: outer_(std::move(outer)), is_excess_(is_excess) {
// Bound in OnMainEntry().
DETACH_FROM_THREAD(worker_thread_checker_);
}
WorkerThread::ThreadLabel
ThreadGroupImpl::WorkerThreadDelegateImpl::GetThreadLabel() const {
return WorkerThread::ThreadLabel::POOLED;
}
void ThreadGroupImpl::WorkerThreadDelegateImpl::OnMainEntry(
WorkerThread* worker) {
DCHECK_CALLED_ON_VALID_THREAD(worker_thread_checker_);
{
#if DCHECK_IS_ON()
CheckedAutoLock auto_lock(outer_->lock_);
DCHECK(ContainsWorker(outer_->workers_,
static_cast<WorkerThreadWaitableEvent*>(worker)));
#endif
}
#if BUILDFLAG(IS_WIN)
worker_only().win_thread_environment = GetScopedWindowsThreadEnvironment(
outer_->after_start().worker_environment);
#endif // BUILDFLAG(IS_WIN)
PlatformThread::SetName(
StringPrintf("ThreadPool%sWorker", outer_->thread_group_label_.c_str()));
outer_->BindToCurrentThread();
worker_only().worker_thread_ =
static_cast<WorkerThreadWaitableEvent*>(worker);
SetBlockingObserverForCurrentThread(this);
if (outer_->worker_started_for_testing_) {
// When |worker_started_for_testing_| is set, the thread that starts workers
// should wait for a worker to have started before starting the next one,
// and there should only be one thread that wakes up workers at a time.
DCHECK(!outer_->worker_started_for_testing_->IsSignaled());
outer_->worker_started_for_testing_->Signal();
}
}
RegisteredTaskSource
ThreadGroupImpl::WorkerThreadDelegateImpl::GetWorkLockRequired(
ScopedCommandsExecutor* executor,
WorkerThreadWaitableEvent* worker) {
DCHECK(ContainsWorker(outer_->workers_, worker));
if (!outer_->after_start().ensure_enough_workers_at_end_of_get_work) {
// Use this opportunity, before assigning work to this worker, to
// create/wake additional workers if needed (doing this here allows us to
// reduce potentially expensive create/wake directly on PostTask()).
//
// Note: FlushWorkerCreation() below releases |outer_->lock_|. It is thus
// important that all other operations come after it to keep this method
// transactional.
outer_->EnsureEnoughWorkersLockRequired(executor);
executor->FlushWorkerCreation(&outer_->lock_);
}
if (!CanGetWorkLockRequired(executor, worker)) {
return nullptr;
}
RegisteredTaskSource task_source;
TaskPriority priority;
while (!task_source && !outer_->priority_queue_.IsEmpty()) {
// Enforce the CanRunPolicy and that no more than |max_best_effort_tasks_|
// BEST_EFFORT tasks run concurrently.
priority = outer_->priority_queue_.PeekSortKey().priority();
if (!outer_->task_tracker_->CanRunPriority(priority) ||
(priority == TaskPriority::BEST_EFFORT &&
outer_->num_running_best_effort_tasks_ >=
outer_->max_best_effort_tasks_)) {
break;
}
task_source = outer_->TakeRegisteredTaskSource(executor);
}
if (!task_source) {
OnWorkerBecomesIdleLockRequired(executor, worker);
return nullptr;
}
// Running task bookkeeping.
outer_->IncrementTasksRunningLockRequired(priority);
DCHECK(!outer_->idle_workers_set_.Contains(worker));
write_worker().current_task_priority = priority;
write_worker().current_shutdown_behavior = task_source->shutdown_behavior();
if (outer_->after_start().ensure_enough_workers_at_end_of_get_work) {
// Subtle: This must be after the call to WillRunTask() inside
// TakeRegisteredTaskSource(), so that any state used by WillRunTask() to
// determine that the task source must remain in the TaskQueue is also used
// to determine the desired number of workers. Concretely, this wouldn't
// work:
//
// Thread 1: GetWork() calls EnsureEnoughWorkers(). No worker woken up
// because the queue contains a job with max concurrency = 1 and
// the current worker is awake.
// Thread 2: Increases the job's max concurrency.
// ShouldQueueUponCapacityIncrease() returns false because the
// job is already queued.
// Thread 1: Calls WillRunTask() on the job. It returns
// kAllowedNotSaturated because max concurrency is not reached.
// But no extra worker is woken up to run the job!
outer_->EnsureEnoughWorkersLockRequired(executor);
}
return task_source;
}
RegisteredTaskSource ThreadGroupImpl::WorkerThreadDelegateImpl::GetWork(
WorkerThread* worker_base) {
DCHECK_CALLED_ON_VALID_THREAD(worker_thread_checker_);
DCHECK(!read_worker().current_task_priority);
DCHECK(!read_worker().current_shutdown_behavior);
WorkerThreadWaitableEvent* worker =
static_cast<WorkerThreadWaitableEvent*>(worker_base);
ScopedCommandsExecutor executor(outer_.get());
CheckedAutoLock auto_lock(outer_->lock_);
return GetWorkLockRequired(&executor, worker);
}
RegisteredTaskSource
ThreadGroupImpl::WorkerThreadDelegateImpl::SwapProcessedTask(
RegisteredTaskSource task_source,
WorkerThread* worker_thread) {
DCHECK_CALLED_ON_VALID_THREAD(worker_thread_checker_);
DCHECK(read_worker().current_task_priority);
DCHECK(read_worker().current_shutdown_behavior);
// A transaction to the TaskSource to reenqueue, if any. Instantiated here as
// |TaskSource::lock_| is a UniversalPredecessor and must always be acquired
// prior to acquiring a second lock
absl::optional<RegisteredTaskSourceAndTransaction>
transaction_with_task_source;
if (task_source) {
transaction_with_task_source.emplace(
RegisteredTaskSourceAndTransaction::FromTaskSource(
std::move(task_source)));
}
// Calling WakeUp() guarantees that this WorkerThread will run Tasks from
// TaskSources returned by the GetWork() method of |delegate_| until it
// returns nullptr. Resetting |wake_up_event_| here doesn't break this
// invariant and avoids a useless loop iteration before going to sleep if
// WakeUp() is called while this WorkerThread is awake.
wake_up_event_.Reset();
ScopedCommandsExecutor workers_executor(outer_.get());
ScopedReenqueueExecutor reenqueue_executor;
CheckedAutoLock auto_lock(outer_->lock_);
// During shutdown, max_tasks may have been incremented in StartShutdown().
if (incremented_max_tasks_for_shutdown_) {
DCHECK(outer_->shutdown_started_);
outer_->DecrementMaxTasksLockRequired();
if (*read_worker().current_task_priority == TaskPriority::BEST_EFFORT) {
outer_->DecrementMaxBestEffortTasksLockRequired();
}
incremented_max_tasks_since_blocked_ = false;
incremented_max_best_effort_tasks_since_blocked_ = false;
incremented_max_tasks_for_shutdown_ = false;
}
DCHECK(read_worker().blocking_start_time.is_null());
DCHECK(!incremented_max_tasks_since_blocked_);
DCHECK(!incremented_max_best_effort_tasks_since_blocked_);
// Running task bookkeeping.
outer_->DecrementTasksRunningLockRequired(
*read_worker().current_task_priority);
write_worker().current_shutdown_behavior = absl::nullopt;
write_worker().current_task_priority = absl::nullopt;
if (transaction_with_task_source) {
outer_->ReEnqueueTaskSourceLockRequired(
&workers_executor, &reenqueue_executor,
std::move(transaction_with_task_source.value()));
}
return GetWorkLockRequired(
&workers_executor,
static_cast<WorkerThreadWaitableEvent*>(worker_thread));
}
TimeDelta ThreadGroupImpl::WorkerThreadDelegateImpl::GetSleepTimeout() {
DCHECK_CALLED_ON_VALID_THREAD(worker_thread_checker_);
if (!is_excess())
return TimeDelta::Max();
// Sleep for an extra 10% to avoid the following pathological case:
// 0) A task is running on a timer which matches
// |after_start().suggested_reclaim_time|.
// 1) The timer fires and this worker is created by
// MaintainAtLeastOneIdleWorkerLockRequired() because the last idle
// worker was assigned the task.
// 2) This worker begins sleeping |after_start().suggested_reclaim_time| (at
// the front of the idle set).
// 3) The task assigned to the other worker completes and the worker goes
// back in the idle set (this worker may now second on the idle set;
// its GetLastUsedTime() is set to Now()).
// 4) The sleep in (2) expires. Since (3) was fast this worker is likely to
// have been second on the idle set long enough for
// CanCleanupLockRequired() to be satisfied in which case this worker is
// cleaned up.
// 5) The timer fires at roughly the same time and we're back to (1) if (4)
// resulted in a clean up; causing thread churn.
//
// Sleeping 10% longer in (2) makes it much less likely that (4) occurs
// before (5). In that case (5) will cause (3) and refresh this worker's
// GetLastUsedTime(), making CanCleanupLockRequired() return false in (4)
// and avoiding churn.
//
// Of course the same problem arises if in (0) the timer matches
// |after_start().suggested_reclaim_time * 1.1| but it's expected that any
// timer slower than |after_start().suggested_reclaim_time| will cause such
// churn during long idle periods. If this is a problem in practice, the
// standby thread configuration and algorithm should be revisited.
return outer_->after_start().suggested_reclaim_time * 1.1;
}
bool ThreadGroupImpl::WorkerThreadDelegateImpl::CanCleanupLockRequired(
const WorkerThreadWaitableEvent* worker) const {
DCHECK_CALLED_ON_VALID_THREAD(worker_thread_checker_);
if (!is_excess())
return false;
const TimeTicks last_used_time = worker->GetLastUsedTime();
return !last_used_time.is_null() &&
subtle::TimeTicksNowIgnoringOverride() - last_used_time >=
outer_->after_start().suggested_reclaim_time &&
LIKELY(!outer_->worker_cleanup_disallowed_for_testing_);
}
void ThreadGroupImpl::WorkerThreadDelegateImpl::CleanupLockRequired(
ScopedCommandsExecutor* executor,
WorkerThreadWaitableEvent* worker) {
DCHECK(!outer_->join_for_testing_started_);
DCHECK_CALLED_ON_VALID_THREAD(worker_thread_checker_);
worker->Cleanup();
if (outer_->IsOnIdleSetLockRequired(worker))
outer_->idle_workers_set_.Remove(worker);
// Remove the worker from |workers_|.
auto worker_iter = ranges::find(outer_->workers_, worker);
DCHECK(worker_iter != outer_->workers_.end());
outer_->workers_.erase(worker_iter);
}
void ThreadGroupImpl::WorkerThreadDelegateImpl::OnWorkerBecomesIdleLockRequired(
ScopedCommandsExecutor* executor,
WorkerThreadWaitableEvent* worker) {
DCHECK_CALLED_ON_VALID_THREAD(worker_thread_checker_);
DCHECK(!outer_->idle_workers_set_.Contains(worker));
// Add the worker to the idle set.
outer_->idle_workers_set_.Insert(worker);
DCHECK_LE(outer_->idle_workers_set_.Size(), outer_->workers_.size());
outer_->idle_workers_set_cv_for_testing_->Broadcast();
}
void ThreadGroupImpl::WorkerThreadDelegateImpl::OnMainExit(
WorkerThread* worker_base) {
DCHECK_CALLED_ON_VALID_THREAD(worker_thread_checker_);
#if DCHECK_IS_ON()
WorkerThreadWaitableEvent* worker =
static_cast<WorkerThreadWaitableEvent*>(worker_base);
{
bool shutdown_complete = outer_->task_tracker_->IsShutdownComplete();
CheckedAutoLock auto_lock(outer_->lock_);
// |worker| should already have been removed from the idle workers set and
// |workers_| by the time the thread is about to exit. (except in the cases
// where the thread group is no longer going to be used - in which case,
// it's fine for there to be invalid workers in the thread group.
if (!shutdown_complete && !outer_->join_for_testing_started_) {
DCHECK(!outer_->idle_workers_set_.Contains(worker));
DCHECK(!ContainsWorker(outer_->workers_, worker));
}
}
#endif
#if BUILDFLAG(IS_WIN)
worker_only().win_thread_environment.reset();
#endif // BUILDFLAG(IS_WIN)
// Count cleaned up workers for tests. It's important to do this here instead
// of at the end of CleanupLockRequired() because some side-effects of
// cleaning up happen outside the lock (e.g. recording histograms) and
// resuming from tests must happen-after that point or checks on the main
// thread will be flaky (crbug.com/1047733).
CheckedAutoLock auto_lock(outer_->lock_);
++outer_->num_workers_cleaned_up_for_testing_;
#if DCHECK_IS_ON()
outer_->some_workers_cleaned_up_for_testing_ = true;
#endif
if (outer_->num_workers_cleaned_up_for_testing_cv_)
outer_->num_workers_cleaned_up_for_testing_cv_->Signal();
}
void ThreadGroupImpl::WorkerThreadDelegateImpl::RecordUnnecessaryWakeup() {
base::BooleanHistogram::FactoryGet(
std::string("ThreadPool.UnnecessaryWakeup.") + outer_->histogram_label_,
base::Histogram::kUmaTargetedHistogramFlag)
->Add(true);
TRACE_EVENT_INSTANT("wakeup.flow", "ThreadPool.UnnecessaryWakeup");
}
void ThreadGroupImpl::WorkerThreadDelegateImpl::BlockingStarted(
BlockingType blocking_type) {
DCHECK_CALLED_ON_VALID_THREAD(worker_thread_checker_);
DCHECK(worker_only().worker_thread_);
// Skip if this blocking scope happened outside of a RunTask.
if (!read_worker().current_task_priority) {
return;
}
worker_only().worker_thread_->MaybeUpdateThreadType();
// WillBlock is always used when time overrides is active. crbug.com/1038867
if (base::subtle::ScopedTimeClockOverrides::overrides_active()) {
blocking_type = BlockingType::WILL_BLOCK;
}
ScopedCommandsExecutor executor(outer_.get());
CheckedAutoLock auto_lock(outer_->lock_);
DCHECK(!incremented_max_tasks_since_blocked_);
DCHECK(!incremented_max_best_effort_tasks_since_blocked_);
DCHECK(read_worker().blocking_start_time.is_null());
write_worker().blocking_start_time = subtle::TimeTicksNowIgnoringOverride();
if (incremented_max_tasks_for_shutdown_)
return;
if (*read_any().current_task_priority == TaskPriority::BEST_EFFORT)
++outer_->num_unresolved_best_effort_may_block_;
if (blocking_type == BlockingType::WILL_BLOCK) {
incremented_max_tasks_since_blocked_ = true;
outer_->IncrementMaxTasksLockRequired();
outer_->EnsureEnoughWorkersLockRequired(&executor);
} else {
++outer_->num_unresolved_may_block_;
}
outer_->MaybeScheduleAdjustMaxTasksLockRequired(&executor);
}
void ThreadGroupImpl::WorkerThreadDelegateImpl::BlockingTypeUpgraded() {
DCHECK_CALLED_ON_VALID_THREAD(worker_thread_checker_);
// Skip if this blocking scope happened outside of a RunTask.
if (!read_worker().current_task_priority) {
return;
}
// The blocking type always being WILL_BLOCK in this experiment and with time
// overrides, it should never be considered "upgraded".
if (base::subtle::ScopedTimeClockOverrides::overrides_active())
return;
ScopedCommandsExecutor executor(outer_.get());
CheckedAutoLock auto_lock(outer_->lock_);
// Don't do anything if a MAY_BLOCK ScopedBlockingCall instantiated in the
// same scope already caused the max tasks to be incremented.
if (incremented_max_tasks_since_blocked_)
return;
// Cancel the effect of a MAY_BLOCK ScopedBlockingCall instantiated in the
// same scope.
--outer_->num_unresolved_may_block_;
incremented_max_tasks_since_blocked_ = true;
outer_->IncrementMaxTasksLockRequired();
outer_->EnsureEnoughWorkersLockRequired(&executor);
}
void ThreadGroupImpl::WorkerThreadDelegateImpl::BlockingEnded() {
DCHECK_CALLED_ON_VALID_THREAD(worker_thread_checker_);
// Skip if this blocking scope happened outside of a RunTask.
if (!read_worker().current_task_priority) {
return;
}
CheckedAutoLock auto_lock(outer_->lock_);
DCHECK(!read_worker().blocking_start_time.is_null());
write_worker().blocking_start_time = TimeTicks();
if (!incremented_max_tasks_for_shutdown_) {
if (incremented_max_tasks_since_blocked_)
outer_->DecrementMaxTasksLockRequired();
else
--outer_->num_unresolved_may_block_;
if (*read_worker().current_task_priority == TaskPriority::BEST_EFFORT) {
if (incremented_max_best_effort_tasks_since_blocked_)
outer_->DecrementMaxBestEffortTasksLockRequired();
else
--outer_->num_unresolved_best_effort_may_block_;
}
}
incremented_max_tasks_since_blocked_ = false;
incremented_max_best_effort_tasks_since_blocked_ = false;
}
void ThreadGroupImpl::WorkerThreadDelegateImpl::OnShutdownStartedLockRequired(
ScopedCommandsExecutor* executor) {
if (!read_any().is_running_task())
return;
// Workers running a CONTINUE_ON_SHUTDOWN tasks are replaced by incrementing
// max_tasks/max_best_effort_tasks. The effect is reverted in
// SwapProcessedTask().
if (*read_any().current_shutdown_behavior ==
TaskShutdownBehavior::CONTINUE_ON_SHUTDOWN) {
incremented_max_tasks_for_shutdown_ = true;
IncrementMaxTasksLockRequired();
}
}
bool ThreadGroupImpl::WorkerThreadDelegateImpl::CanGetWorkLockRequired(
ScopedCommandsExecutor* executor,
WorkerThreadWaitableEvent* worker) {
const bool is_on_idle_workers_set = outer_->IsOnIdleSetLockRequired(worker);
DCHECK_EQ(is_on_idle_workers_set, outer_->idle_workers_set_.Contains(worker));
// This occurs when the when WorkerThread::Delegate::WaitForWork() times out
// (i.e. when the worker's wakes up after GetSleepTimeout()).
if (is_on_idle_workers_set) {
if (CanCleanupLockRequired(worker))
CleanupLockRequired(executor, worker);
return false;
}
// If too many workers are running, this worker should not get work, until
// tasks are no longer in excess (i.e. max tasks increases). This ensures that
// if this worker is in excess, it gets a chance to being cleaned up.
if (outer_->GetNumAwakeWorkersLockRequired() > outer_->max_tasks_) {
OnWorkerBecomesIdleLockRequired(executor, worker);
return false;
}
return true;
}
void ThreadGroupImpl::WorkerThreadDelegateImpl::
MaybeIncrementMaxTasksLockRequired() {
if (read_any().blocking_start_time.is_null() ||
subtle::TimeTicksNowIgnoringOverride() - read_any().blocking_start_time <
outer_->after_start().may_block_threshold) {
return;
}
IncrementMaxTasksLockRequired();
}
void ThreadGroupImpl::WorkerThreadDelegateImpl::
IncrementMaxTasksLockRequired() {
if (!incremented_max_tasks_since_blocked_) {
outer_->IncrementMaxTasksLockRequired();
// Update state for an unresolved ScopedBlockingCall.
if (!read_any().blocking_start_time.is_null()) {
incremented_max_tasks_since_blocked_ = true;
--outer_->num_unresolved_may_block_;
}
}
if (*read_any().current_task_priority == TaskPriority::BEST_EFFORT &&
!incremented_max_best_effort_tasks_since_blocked_) {
outer_->IncrementMaxBestEffortTasksLockRequired();
// Update state for an unresolved ScopedBlockingCall.
if (!read_any().blocking_start_time.is_null()) {
incremented_max_best_effort_tasks_since_blocked_ = true;
--outer_->num_unresolved_best_effort_may_block_;
}
}
}
void ThreadGroupImpl::WaitForWorkersIdleLockRequiredForTesting(size_t n) {
// Make sure workers do not cleanup while watching the idle count.
AutoReset<bool> ban_cleanups(&worker_cleanup_disallowed_for_testing_, true);
while (idle_workers_set_.Size() < n)
idle_workers_set_cv_for_testing_->Wait();
}
void ThreadGroupImpl::MaintainAtLeastOneIdleWorkerLockRequired(
ScopedCommandsExecutor* executor) {
if (workers_.size() == kMaxNumberOfWorkers)
return;
DCHECK_LT(workers_.size(), kMaxNumberOfWorkers);
if (!idle_workers_set_.IsEmpty())
return;
if (workers_.size() >= max_tasks_)
return;
scoped_refptr<WorkerThreadWaitableEvent> new_worker =
CreateAndRegisterWorkerLockRequired(executor);
DCHECK(new_worker);
idle_workers_set_.Insert(new_worker.get());
}
scoped_refptr<WorkerThreadWaitableEvent>
ThreadGroupImpl::CreateAndRegisterWorkerLockRequired(
ScopedCommandsExecutor* executor) {
DCHECK(!join_for_testing_started_);
DCHECK_LT(workers_.size(), max_tasks_);
DCHECK_LT(workers_.size(), kMaxNumberOfWorkers);
DCHECK(idle_workers_set_.IsEmpty());
// WorkerThread needs |lock_| as a predecessor for its thread lock because in
// GetWork(), |lock_| is first acquired and then the thread lock is acquired
// when GetLastUsedTime() is called on the worker by CanGetWorkLockRequired().
scoped_refptr<WorkerThreadWaitableEvent> worker =
MakeRefCounted<WorkerThreadWaitableEvent>(
thread_type_hint_,
std::make_unique<WorkerThreadDelegateImpl>(
tracked_ref_factory_.GetTrackedRef(),
/* is_excess=*/after_start().no_worker_reclaim
? workers_.size() >= after_start().initial_max_tasks
: true),
task_tracker_, worker_sequence_num_++, &lock_);
workers_.push_back(worker);
executor->ScheduleStart(worker);
DCHECK_LE(workers_.size(), max_tasks_);
return worker;
}
size_t ThreadGroupImpl::GetNumAwakeWorkersLockRequired() const {
DCHECK_GE(workers_.size(), idle_workers_set_.Size());
size_t num_awake_workers = workers_.size() - idle_workers_set_.Size();
DCHECK_GE(num_awake_workers, num_running_tasks_);
return num_awake_workers;
}
size_t ThreadGroupImpl::GetDesiredNumAwakeWorkersLockRequired() const {
// Number of BEST_EFFORT task sources that are running or queued and allowed
// to run by the CanRunPolicy.
const size_t num_running_or_queued_can_run_best_effort_task_sources =
num_running_best_effort_tasks_ +
GetNumAdditionalWorkersForBestEffortTaskSourcesLockRequired();
const size_t workers_for_best_effort_task_sources =
std::max(std::min(num_running_or_queued_can_run_best_effort_task_sources,
max_best_effort_tasks_),
num_running_best_effort_tasks_);
// Number of USER_{VISIBLE|BLOCKING} task sources that are running or queued.
const size_t num_running_or_queued_foreground_task_sources =
(num_running_tasks_ - num_running_best_effort_tasks_) +
GetNumAdditionalWorkersForForegroundTaskSourcesLockRequired();
const size_t workers_for_foreground_task_sources =
num_running_or_queued_foreground_task_sources;
return std::min({workers_for_best_effort_task_sources +
workers_for_foreground_task_sources,
max_tasks_, kMaxNumberOfWorkers});
}
void ThreadGroupImpl::DidUpdateCanRunPolicy() {
ScopedCommandsExecutor executor(this);
CheckedAutoLock auto_lock(lock_);
EnsureEnoughWorkersLockRequired(&executor);
}
void ThreadGroupImpl::OnShutdownStarted() {
ScopedCommandsExecutor executor(this);
CheckedAutoLock auto_lock(lock_);
// Don't do anything if the thread group isn't started.
if (max_tasks_ == 0 || UNLIKELY(join_for_testing_started_))
return;
// Start a MAY_BLOCK scope on each worker that is already running a task.
for (scoped_refptr<WorkerThreadWaitableEvent>& worker : workers_) {
// The delegates of workers inside a ThreadGroupImpl should be
// WorkerThreadDelegateImpls.
WorkerThreadDelegateImpl* delegate =
static_cast<WorkerThreadDelegateImpl*>(worker->delegate());
AnnotateAcquiredLockAlias annotate(lock_, delegate->lock());
delegate->OnShutdownStartedLockRequired(&executor);
}
EnsureEnoughWorkersLockRequired(&executor);
shutdown_started_ = true;
}
void ThreadGroupImpl::EnsureEnoughWorkersLockRequired(
BaseScopedCommandsExecutor* base_executor) {
// Don't do anything if the thread group isn't started.
if (max_tasks_ == 0 || UNLIKELY(join_for_testing_started_))
return;
ScopedCommandsExecutor* executor =
static_cast<ScopedCommandsExecutor*>(base_executor);
const size_t desired_num_awake_workers =
GetDesiredNumAwakeWorkersLockRequired();
const size_t num_awake_workers = GetNumAwakeWorkersLockRequired();
size_t num_workers_to_wake_up =
ClampSub(desired_num_awake_workers, num_awake_workers);
num_workers_to_wake_up = std::min(num_workers_to_wake_up, size_t(2U));
// Wake up the appropriate number of workers.
for (size_t i = 0; i < num_workers_to_wake_up; ++i) {
MaintainAtLeastOneIdleWorkerLockRequired(executor);
WorkerThreadWaitableEvent* worker_to_wakeup = idle_workers_set_.Take();
DCHECK(worker_to_wakeup);
executor->ScheduleWakeUp(worker_to_wakeup);
}
// In the case where the loop above didn't wake up any worker and we don't
// have excess workers, the idle worker should be maintained. This happens
// when called from the last worker awake, or a recent increase in |max_tasks|
// now makes it possible to keep an idle worker.
if (desired_num_awake_workers == num_awake_workers)
MaintainAtLeastOneIdleWorkerLockRequired(executor);
// This function is called every time a task source is (re-)enqueued,
// hence the minimum priority needs to be updated.
UpdateMinAllowedPriorityLockRequired();
// Ensure that the number of workers is periodically adjusted if needed.
MaybeScheduleAdjustMaxTasksLockRequired(executor);
}
void ThreadGroupImpl::AdjustMaxTasks() {
DCHECK(
after_start().service_thread_task_runner->RunsTasksInCurrentSequence());
ScopedCommandsExecutor executor(this);
CheckedAutoLock auto_lock(lock_);
DCHECK(adjust_max_tasks_posted_);
adjust_max_tasks_posted_ = false;
// Increment max tasks for each worker that has been within a MAY_BLOCK
// ScopedBlockingCall for more than may_block_threshold.
for (scoped_refptr<WorkerThreadWaitableEvent> worker : workers_) {
// The delegates of workers inside a ThreadGroupImpl should be
// WorkerThreadDelegateImpls.
WorkerThreadDelegateImpl* delegate =
static_cast<WorkerThreadDelegateImpl*>(worker->delegate());
AnnotateAcquiredLockAlias annotate(lock_, delegate->lock());
delegate->MaybeIncrementMaxTasksLockRequired();
}
// Wake up workers according to the updated |max_tasks_|. This will also
// reschedule AdjustMaxTasks() if necessary.
EnsureEnoughWorkersLockRequired(&executor);
}
void ThreadGroupImpl::ScheduleAdjustMaxTasks() {
// |adjust_max_tasks_posted_| can't change before the task posted below runs.
// Skip check on NaCl to avoid unsafe reference acquisition warning.
#if !BUILDFLAG(IS_NACL)
DCHECK(TS_UNCHECKED_READ(adjust_max_tasks_posted_));
#endif
after_start().service_thread_task_runner->PostDelayedTask(
FROM_HERE, BindOnce(&ThreadGroupImpl::AdjustMaxTasks, Unretained(this)),
after_start().blocked_workers_poll_period);
}
void ThreadGroupImpl::MaybeScheduleAdjustMaxTasksLockRequired(
ScopedCommandsExecutor* executor) {
if (!adjust_max_tasks_posted_ &&
ShouldPeriodicallyAdjustMaxTasksLockRequired()) {
executor->ScheduleAdjustMaxTasks();
adjust_max_tasks_posted_ = true;
}
}
bool ThreadGroupImpl::ShouldPeriodicallyAdjustMaxTasksLockRequired() {
// AdjustMaxTasks() should be scheduled to periodically adjust |max_tasks_|
// and |max_best_effort_tasks_| when (1) the concurrency limits are not large
// enough to accommodate all queued and running task sources and an idle
// worker and (2) there are unresolved MAY_BLOCK ScopedBlockingCalls.
// - When (1) is false: No worker would be created or woken up if the
// concurrency limits were increased, so there is no hurry to increase them.
// - When (2) is false: The concurrency limits could not be increased by
// AdjustMaxTasks().
const size_t num_running_or_queued_best_effort_task_sources =
num_running_best_effort_tasks_ +
GetNumAdditionalWorkersForBestEffortTaskSourcesLockRequired();
if (num_running_or_queued_best_effort_task_sources > max_best_effort_tasks_ &&
num_unresolved_best_effort_may_block_ > 0) {
return true;
}
const size_t num_running_or_queued_task_sources =
num_running_tasks_ +
GetNumAdditionalWorkersForBestEffortTaskSourcesLockRequired() +
GetNumAdditionalWorkersForForegroundTaskSourcesLockRequired();
constexpr size_t kIdleWorker = 1;
return num_running_or_queued_task_sources + kIdleWorker > max_tasks_ &&
num_unresolved_may_block_ > 0;
}
void ThreadGroupImpl::UpdateMinAllowedPriorityLockRequired() {
if (priority_queue_.IsEmpty() || num_running_tasks_ < max_tasks_) {
max_allowed_sort_key_.store(kMaxYieldSortKey, std::memory_order_relaxed);
} else {
max_allowed_sort_key_.store({priority_queue_.PeekSortKey().priority(),
priority_queue_.PeekSortKey().worker_count()},
std::memory_order_relaxed);
}
}
bool ThreadGroupImpl::IsOnIdleSetLockRequired(
WorkerThreadWaitableEvent* worker) const {
// To avoid searching through the idle set : use GetLastUsedTime() not being
// null (or being directly on top of the idle set) as a proxy for being on
// the idle set.
return idle_workers_set_.Peek() == worker ||
!worker->GetLastUsedTime().is_null();
}
void ThreadGroupImpl::DecrementTasksRunningLockRequired(TaskPriority priority) {
DCHECK_GT(num_running_tasks_, 0U);
--num_running_tasks_;
if (priority == TaskPriority::BEST_EFFORT) {
DCHECK_GT(num_running_best_effort_tasks_, 0U);
--num_running_best_effort_tasks_;
}
UpdateMinAllowedPriorityLockRequired();
}
void ThreadGroupImpl::IncrementTasksRunningLockRequired(TaskPriority priority) {
++num_running_tasks_;
DCHECK_LE(num_running_tasks_, max_tasks_);
DCHECK_LE(num_running_tasks_, kMaxNumberOfWorkers);
if (priority == TaskPriority::BEST_EFFORT) {
++num_running_best_effort_tasks_;
DCHECK_LE(num_running_best_effort_tasks_, num_running_tasks_);
DCHECK_LE(num_running_best_effort_tasks_, max_best_effort_tasks_);
}
UpdateMinAllowedPriorityLockRequired();
}
void ThreadGroupImpl::DecrementMaxTasksLockRequired() {
DCHECK_GT(num_running_tasks_, 0U);
DCHECK_GT(max_tasks_, 0U);
--max_tasks_;
UpdateMinAllowedPriorityLockRequired();
}
void ThreadGroupImpl::IncrementMaxTasksLockRequired() {
DCHECK_GT(num_running_tasks_, 0U);
++max_tasks_;
UpdateMinAllowedPriorityLockRequired();
}
void ThreadGroupImpl::DecrementMaxBestEffortTasksLockRequired() {
DCHECK_GT(num_running_tasks_, 0U);
DCHECK_GT(max_best_effort_tasks_, 0U);
--max_best_effort_tasks_;
UpdateMinAllowedPriorityLockRequired();
}
void ThreadGroupImpl::IncrementMaxBestEffortTasksLockRequired() {
DCHECK_GT(num_running_tasks_, 0U);
++max_best_effort_tasks_;
UpdateMinAllowedPriorityLockRequired();
}
ThreadGroupImpl::InitializedInStart::InitializedInStart() = default;
ThreadGroupImpl::InitializedInStart::~InitializedInStart() = default;
} // namespace internal
} // namespace base