blob: b6f6a500bea284c49c64633f55017d189a0efb72 [file] [log] [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_FUNCTIONAL_BIND_INTERNAL_H_
#define BASE_FUNCTIONAL_BIND_INTERNAL_H_
#include <stddef.h>
#include <functional>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include "base/allocator/partition_allocator/src/partition_alloc/partition_alloc_buildflags.h"
#include "base/allocator/partition_allocator/src/partition_alloc/partition_alloc_config.h"
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/functional/callback_internal.h"
#include "base/functional/disallow_unretained.h"
#include "base/functional/unretained_traits.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ptr_asan_bound_arg_tracker.h"
#include "base/memory/raw_ref.h"
#include "base/memory/raw_scoped_refptr_mismatch_checker.h"
#include "base/memory/weak_ptr.h"
#include "base/notreached.h"
#include "base/types/always_false.h"
#include "base/types/is_instantiation.h"
#include "build/build_config.h"
#include "third_party/abseil-cpp/absl/functional/function_ref.h"
// See base/functional/callback.h for user documentation.
//
//
// CONCEPTS:
// Functor -- A movable type representing something that should be called.
// All function pointers and Callback<> are functors even if the
// invocation syntax differs.
// RunType -- A function type (as opposed to function _pointer_ type) for
// a Callback<>::Run(). Usually just a convenience typedef.
// (Bound)Args -- A set of types that stores the arguments.
//
// Types:
// ForceVoidReturn<> -- Helper class for translating function signatures to
// equivalent forms with a "void" return type.
// FunctorTraits<> -- Type traits used to determine the correct RunType and
// invocation manner for a Functor. This is where function
// signature adapters are applied.
// StorageTraits<> -- Type traits that determine how a bound argument is
// stored in BindState.
// InvokeHelper<> -- Take a Functor + arguments and actually invokes it.
// Handle the differing syntaxes needed for WeakPtr<>
// support. This is separate from Invoker to avoid creating
// multiple version of Invoker<>.
// Invoker<> -- Unwraps the curried parameters and executes the Functor.
// BindState<> -- Stores the curried parameters, and is the main entry point
// into the Bind() system.
#if BUILDFLAG(IS_WIN)
namespace Microsoft {
namespace WRL {
template <typename>
class ComPtr;
} // namespace WRL
} // namespace Microsoft
#endif
namespace base {
template <typename T>
struct IsWeakReceiver;
template <typename>
struct BindUnwrapTraits;
template <typename Functor, typename BoundArgsTuple>
struct CallbackCancellationTraits;
template <typename Signature>
class FunctionRef;
namespace unretained_traits {
// UnretainedWrapper will check and report if pointer is dangling upon
// invocation.
struct MayNotDangle {};
// UnretainedWrapper won't check if pointer is dangling upon invocation. For
// extra safety, the receiver must be of type MayBeDangling<>.
struct MayDangle {};
// UnretainedWrapper won't check if pointer is dangling upon invocation. The
// receiver doesn't have to be a raw_ptr<>. This is just a temporary state, to
// allow dangling pointers that would otherwise crash if MayNotDangle was used.
// It should be replaced ASAP with MayNotDangle (after fixing the dangling
// pointers) or with MayDangle if there is really no other way (after making
// receivers MayBeDangling<>).
struct MayDangleUntriaged {};
} // namespace unretained_traits
namespace internal {
template <typename Functor>
struct FunctorTraits;
template <typename T,
typename UnretainedTrait,
RawPtrTraits PtrTraits = RawPtrTraits::kEmpty>
class UnretainedWrapper {
// Note that if PtrTraits already includes MayDangle, DanglingRawPtrType
// will be identical to `raw_ptr<T, PtrTraits>`.
using DanglingRawPtrType = MayBeDangling<T, PtrTraits>;
public:
// We want the getter type to match the receiver parameter that it is passed
// into, to minimize `raw_ptr<T>` <-> `T*` conversions. We also would like to
// match `StorageType`, but sometimes we can't have both, as shown in
// https://docs.google.com/document/d/1dLM34aKqbNBfRdOYxxV_T-zQU4J5wjmXwIBJZr7JvZM/edit
// When we can't have both, prefer the former, mostly because
// `GetPtrType`=`raw_ptr<T>` would break if e.g. `UnretainedWrapper()` is
// constructed using `char*`, but the receiver is of type `std::string&`.
// This is enforced by `static_assert`s in `ParamCanBeBound`.
using GetPtrType = std::conditional_t<
raw_ptr_traits::IsSupportedType<T>::value &&
std::is_same_v<UnretainedTrait, unretained_traits::MayDangle>,
DanglingRawPtrType,
T*>;
static_assert(TypeSupportsUnretainedV<T>,
"Callback cannot capture an unprotected C++ pointer since this "
"type is annotated with DISALLOW_UNRETAINED(). Please see "
"base/functional/disallow_unretained.h for alternatives.");
// Raw pointer makes sense only if there are no PtrTraits. If there are,
// it means that a `raw_ptr` is being passed, so use the ctors below instead.
explicit UnretainedWrapper(T* o)
requires(PtrTraits == RawPtrTraits::kEmpty)
: ptr_(o) {}
explicit UnretainedWrapper(const raw_ptr<T, PtrTraits>& o)
requires(raw_ptr_traits::IsSupportedType<T>::value)
: ptr_(o) {}
explicit UnretainedWrapper(raw_ptr<T, PtrTraits>&& o)
requires(raw_ptr_traits::IsSupportedType<T>::value)
: ptr_(std::move(o)) {}
GetPtrType get() const { return GetInternal(ptr_); }
private:
// `ptr_` is either a `raw_ptr` or a regular C++ pointer.
template <typename U>
static GetPtrType GetInternal(U* ptr) {
static_assert(std::is_same_v<T, U>);
return ptr;
}
template <typename U, RawPtrTraits Traits>
static GetPtrType GetInternal(const raw_ptr<U, Traits>& ptr) {
static_assert(std::is_same_v<T, U>);
if constexpr (std::is_same_v<UnretainedTrait,
unretained_traits::MayNotDangle>) {
ptr.ReportIfDangling();
}
return ptr;
}
// `Unretained()` arguments often dangle by design (a common design pattern
// is to manage an object's lifetime inside the callback itself, using
// stateful information), so disable direct dangling pointer detection
// of `ptr_`.
//
// If the callback is invoked, dangling pointer detection will be triggered
// before invoking the bound functor (unless stated otherwise, see
// `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the
// pointer value via `get()` above.
using StorageType =
std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value,
DanglingRawPtrType,
T*>;
// Avoid converting between different `raw_ptr` types when calling `get()`.
// It is allowable to convert `raw_ptr<T>` -> `T*`, but not in the other
// direction. See the comment by `GetPtrType` describing for more details.
static_assert(std::is_pointer_v<GetPtrType> ||
std::is_same_v<GetPtrType, StorageType>);
StorageType ptr_;
};
// Storage type for std::reference_wrapper so `BindState` can internally store
// unprotected references using raw_ref.
//
// std::reference_wrapper<T> and T& do not work, since the reference lifetime is
// not safely protected by MiraclePtr.
//
// UnretainedWrapper<T> and raw_ptr<T> do not work, since BindUnwrapTraits would
// try to pass by T* rather than T&.
template <typename T,
typename UnretainedTrait,
RawPtrTraits PtrTraits = RawPtrTraits::kEmpty>
class UnretainedRefWrapper {
public:
static_assert(
TypeSupportsUnretainedV<T>,
"Callback cannot capture an unprotected C++ reference since this "
"type is annotated with DISALLOW_UNRETAINED(). Please see "
"base/functional/disallow_unretained.h for alternatives.");
// Raw reference makes sense only if there are no PtrTraits. If there are,
// it means that a `raw_ref` is being passed, so use the ctors below instead.
explicit UnretainedRefWrapper(T& o)
requires(PtrTraits == RawPtrTraits::kEmpty)
: ref_(o) {}
explicit UnretainedRefWrapper(const raw_ref<T, PtrTraits>& o)
requires(raw_ptr_traits::IsSupportedType<T>::value)
: ref_(o) {}
explicit UnretainedRefWrapper(raw_ref<T, PtrTraits>&& o)
requires(raw_ptr_traits::IsSupportedType<T>::value)
: ref_(std::move(o)) {}
T& get() const { return GetInternal(ref_); }
private:
// `ref_` is either a `raw_ref` or a regular C++ reference.
template <typename U>
static T& GetInternal(U& ref) {
static_assert(std::is_same_v<T, U>);
return ref;
}
template <typename U, RawPtrTraits Traits>
static T& GetInternal(const raw_ref<U, Traits>& ref) {
static_assert(std::is_same_v<T, U>);
// The ultimate goal is to crash when a callback is invoked with a
// dangling pointer. This is checked here. For now, it is configured to
// either crash, DumpWithoutCrashing or be ignored. This depends on the
// PartitionAllocUnretainedDanglingPtr feature.
if constexpr (std::is_same_v<UnretainedTrait,
unretained_traits::MayNotDangle>) {
ref.ReportIfDangling();
}
// We can't use operator* here, we need to use raw_ptr's GetForExtraction
// instead of GetForDereference. If we did use GetForDereference then we'd
// crash in ASAN builds on calling a bound callback with a dangling
// reference parameter even if that parameter is not used. This could hide
// a later unprotected issue that would be reached in release builds.
return ref.get();
}
// `Unretained()` arguments often dangle by design (a common design pattern
// is to manage an object's lifetime inside the callback itself, using
// stateful information), so disable direct dangling pointer detection
// of `ref_`.
//
// If the callback is invoked, dangling pointer detection will be triggered
// before invoking the bound functor (unless stated otherwise, see
// `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the
// pointer value via `get()` above.
using StorageType =
std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value,
raw_ref<T, DisableDanglingPtrDetection>,
T&>;
StorageType ref_;
};
// The class is used to wrap `UnretainedRefWrapper` when the latter is used as
// a method receiver (a reference on `this` argument). This is needed because
// the internal callback mechanism expects the receiver to have the type
// `MyClass*` and to have `operator*`.
// This is used as storage.
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
class UnretainedRefWrapperReceiver {
public:
// NOLINTNEXTLINE(google-explicit-constructor)
UnretainedRefWrapperReceiver(
UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>&& obj)
: obj_(std::move(obj)) {}
T& operator*() const { return obj_.get(); }
T* operator->() const { return &obj_.get(); }
private:
UnretainedRefWrapper<T, UnretainedTrait, PtrTraits> obj_;
};
// MethodReceiverStorageType converts the current receiver type to its stored
// type. For instance, it converts pointers to `scoped_refptr`, and wraps
// `UnretainedRefWrapper` to make it compliant with the internal callback
// invocation mechanism.
template <typename T>
struct MethodReceiverStorageType {
using Type =
std::conditional_t<IsPointerV<T>, scoped_refptr<RemovePointerT<T>>, T>;
};
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
struct MethodReceiverStorageType<
UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>> {
// We can't use UnretainedRefWrapper as a receiver directly (see
// UnretainedRefWrapperReceiver for why).
using Type = UnretainedRefWrapperReceiver<T, UnretainedTrait, PtrTraits>;
};
template <typename T>
class RetainedRefWrapper {
public:
explicit RetainedRefWrapper(T* o) : ptr_(o) {}
explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {}
T* get() const { return ptr_.get(); }
private:
scoped_refptr<T> ptr_;
};
template <typename T>
struct IgnoreResultHelper {
explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {}
explicit operator bool() const { return !!functor_; }
T functor_;
};
template <typename T, typename Deleter = std::default_delete<T>>
class OwnedWrapper {
public:
explicit OwnedWrapper(T* o) : ptr_(o) {}
explicit OwnedWrapper(std::unique_ptr<T, Deleter>&& ptr)
: ptr_(std::move(ptr)) {}
T* get() const { return ptr_.get(); }
private:
std::unique_ptr<T, Deleter> ptr_;
};
template <typename T>
class OwnedRefWrapper {
public:
explicit OwnedRefWrapper(const T& t) : t_(t) {}
explicit OwnedRefWrapper(T&& t) : t_(std::move(t)) {}
T& get() const { return t_; }
private:
mutable T t_;
};
// PassedWrapper is a copyable adapter for a scoper that ignores const.
//
// It is needed to get around the fact that Bind() takes a const reference to
// all its arguments. Because Bind() takes a const reference to avoid
// unnecessary copies, it is incompatible with movable-but-not-copyable
// types; doing a destructive "move" of the type into Bind() would violate
// the const correctness.
//
// This conundrum cannot be solved without either C++11 rvalue references or
// a O(2^n) blowup of Bind() templates to handle each combination of regular
// types and movable-but-not-copyable types. Thus we introduce a wrapper type
// that is copyable to transmit the correct type information down into
// BindState<>. Ignoring const in this type makes sense because it is only
// created when we are explicitly trying to do a destructive move.
//
// Two notes:
// 1) PassedWrapper supports any type that has a move constructor, however
// the type will need to be specifically allowed in order for it to be
// bound to a Callback. We guard this explicitly at the call of Passed()
// to make for clear errors. Things not given to Passed() will be forwarded
// and stored by value which will not work for general move-only types.
// 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
// scoper to a Callback and allow the Callback to execute once.
template <typename T>
class PassedWrapper {
public:
explicit PassedWrapper(T&& scoper) : scoper_(std::move(scoper)) {}
PassedWrapper(PassedWrapper&& other)
: is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
T Take() const {
CHECK(is_valid_);
is_valid_ = false;
return std::move(scoper_);
}
private:
mutable bool is_valid_ = true;
mutable T scoper_;
};
template <typename T>
using Unwrapper = BindUnwrapTraits<std::decay_t<T>>;
template <typename T>
decltype(auto) Unwrap(T&& o) {
return Unwrapper<T>::Unwrap(std::forward<T>(o));
}
// IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
// method. It is used internally by Bind() to select the correct
// InvokeHelper that will no-op itself in the event the WeakPtr<> for
// the target object is invalidated.
//
// The first argument should be the type of the object that will be received by
// the method.
template <bool is_method, typename... Args>
struct IsWeakMethod : std::false_type {};
template <typename T, typename... Args>
struct IsWeakMethod<true, T, Args...> : IsWeakReceiver<T> {};
// Packs a list of types to hold them in a single type.
template <typename... Types>
struct TypeList {};
// Used for DropTypeListItem implementation.
template <size_t n, typename List>
struct DropTypeListItemImpl;
// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
template <size_t n, typename T, typename... List>
struct DropTypeListItemImpl<n, TypeList<T, List...>>
: DropTypeListItemImpl<n - 1, TypeList<List...>> {};
template <typename T, typename... List>
struct DropTypeListItemImpl<0, TypeList<T, List...>> {
using Type = TypeList<T, List...>;
};
template <>
struct DropTypeListItemImpl<0, TypeList<>> {
using Type = TypeList<>;
};
// A type-level function that drops |n| list item from given TypeList.
template <size_t n, typename List>
using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
// Used for TakeTypeListItem implementation.
template <size_t n, typename List, typename... Accum>
struct TakeTypeListItemImpl;
// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
template <size_t n, typename T, typename... List, typename... Accum>
struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
: TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};
template <typename T, typename... List, typename... Accum>
struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> {
using Type = TypeList<Accum...>;
};
template <typename... Accum>
struct TakeTypeListItemImpl<0, TypeList<>, Accum...> {
using Type = TypeList<Accum...>;
};
// A type-level function that takes first |n| list item from given TypeList.
// E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to
// TypeList<A, B, C>.
template <size_t n, typename List>
using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;
// Used for ConcatTypeLists implementation.
template <typename List1, typename List2>
struct ConcatTypeListsImpl;
template <typename... Types1, typename... Types2>
struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
using Type = TypeList<Types1..., Types2...>;
};
// A type-level function that concats two TypeLists.
template <typename List1, typename List2>
using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;
// Used for MakeFunctionType implementation.
template <typename R, typename ArgList>
struct MakeFunctionTypeImpl;
template <typename R, typename... Args>
struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
// MSVC 2013 doesn't support Type Alias of function types.
// Revisit this after we update it to newer version.
typedef R Type(Args...);
};
// A type-level function that constructs a function type that has |R| as its
// return type and has TypeLists items as its arguments.
template <typename R, typename ArgList>
using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
// Used for ExtractArgs and ExtractReturnType.
template <typename Signature>
struct ExtractArgsImpl;
template <typename R, typename... Args>
struct ExtractArgsImpl<R(Args...)> {
using ReturnType = R;
using ArgsList = TypeList<Args...>;
};
// A type-level function that extracts function arguments into a TypeList.
// E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>.
template <typename Signature>
using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList;
// A type-level function that extracts the return type of a function.
// E.g. ExtractReturnType<R(A, B, C)> is evaluated to R.
template <typename Signature>
using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType;
template <typename Callable,
typename Signature = decltype(&Callable::operator())>
struct ExtractCallableRunTypeImpl;
template <typename Callable, typename R, typename... Args>
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...)> {
using Type = R(Args...);
};
template <typename Callable, typename R, typename... Args>
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...) const> {
using Type = R(Args...);
};
template <typename Callable, typename R, typename... Args>
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...) noexcept> {
using Type = R(Args...);
};
template <typename Callable, typename R, typename... Args>
struct ExtractCallableRunTypeImpl<Callable,
R (Callable::*)(Args...) const noexcept> {
using Type = R(Args...);
};
// Evaluated to RunType of the given callable type.
// Example:
// auto f = [](int, char*) { return 0.1; };
// ExtractCallableRunType<decltype(f)>
// is evaluated to
// double(int, char*);
template <typename Callable>
using ExtractCallableRunType =
typename ExtractCallableRunTypeImpl<Callable>::Type;
// IsCallableObject<Functor> is std::true_type if |Functor| has operator().
// Otherwise, it's std::false_type.
// Example:
// IsCallableObject<void(*)()>::value is false.
//
// struct Foo {};
// IsCallableObject<void(Foo::*)()>::value is false.
//
// int i = 0;
// auto f = [i] {};
// IsCallableObject<decltype(f)>::value is false.
template <typename Functor>
struct IsCallableObject : std::false_type {};
template <typename Callable>
requires requires { &Callable::operator(); }
struct IsCallableObject<Callable> : std::true_type {};
// HasRefCountedTypeAsRawPtr inherits from true_type when any of the |Args| is a
// raw pointer to a RefCounted type.
template <typename... Ts>
struct HasRefCountedTypeAsRawPtr
: std::disjunction<NeedsScopedRefptrButGetsRawPtr<Ts>...> {};
// ForceVoidReturn<>
//
// Set of templates that support forcing the function return type to void.
template <typename Sig>
struct ForceVoidReturn;
template <typename R, typename... Args>
struct ForceVoidReturn<R(Args...)> {
using RunType = void(Args...);
};
// FunctorTraits<>
//
// See description at top of file.
template <typename Functor>
struct FunctorTraits;
// For callable types.
// This specialization handles lambdas (captureless and capturing) and functors
// with a call operator. Capturing lambdas and stateful functors are explicitly
// disallowed by `BindHelper<>::Bind()`.
//
// Example:
//
// // Captureless lambdas are allowed.
// [] { return 42; };
//
// // Capturing lambdas are *not* allowed.
// int x;
// [x] { return x; };
//
// // Any empty class with operator() is allowed.
// struct Foo {
// void operator()() const {}
// // No non-static member variable and no virtual functions.
// };
template <typename Functor>
requires(IsCallableObject<Functor>::value)
struct FunctorTraits<Functor> {
using RunType = ExtractCallableRunType<Functor>;
static constexpr bool is_method = false;
static constexpr bool is_nullable = false;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = std::is_empty_v<Functor>;
template <typename RunFunctor, typename... RunArgs>
static ExtractReturnType<RunType> Invoke(RunFunctor&& functor,
RunArgs&&... args) {
return std::forward<RunFunctor>(functor)(std::forward<RunArgs>(args)...);
}
};
// For functions.
template <typename R, typename... Args>
struct FunctorTraits<R (*)(Args...)> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename Function, typename... RunArgs>
static R Invoke(Function&& function, RunArgs&&... args) {
return std::forward<Function>(function)(std::forward<RunArgs>(args)...);
}
};
#if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
// For functions.
template <typename R, typename... Args>
struct FunctorTraits<R(__stdcall*)(Args...)> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename... RunArgs>
static R Invoke(R(__stdcall* function)(Args...), RunArgs&&... args) {
return function(std::forward<RunArgs>(args)...);
}
};
// For functions.
template <typename R, typename... Args>
struct FunctorTraits<R(__fastcall*)(Args...)> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename... RunArgs>
static R Invoke(R(__fastcall* function)(Args...), RunArgs&&... args) {
return function(std::forward<RunArgs>(args)...);
}
};
#endif // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
#if __OBJC__
// Support for Objective-C blocks. Blocks can be bound as the compiler will
// ensure their lifetimes will be correctly managed.
#if HAS_FEATURE(objc_arc)
template <typename R, typename... Args>
struct FunctorTraits<R (^)(Args...)> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename BlockType, typename... RunArgs>
static R Invoke(BlockType&& block, RunArgs&&... args) {
// According to LLVM documentation (§ 6.3), "local variables of automatic
// storage duration do not have precise lifetime." Use objc_precise_lifetime
// to ensure that the Objective-C block is not deallocated until it has
// finished executing even if the Callback<> is destroyed during the block
// execution.
// https://clang.llvm.org/docs/AutomaticReferenceCounting.html#precise-lifetime-semantics
__attribute__((objc_precise_lifetime)) R (^scoped_block)(Args...) = block;
return scoped_block(std::forward<RunArgs>(args)...);
}
};
#endif // HAS_FEATURE(objc_arc)
#endif // __OBJC__
// For methods.
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...)> {
using RunType = R(Receiver*, Args...);
static constexpr bool is_method = true;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename Method, typename ReceiverPtr, typename... RunArgs>
static R Invoke(Method method,
ReceiverPtr&& receiver_ptr,
RunArgs&&... args) {
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
}
};
// For const methods.
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...) const> {
using RunType = R(const Receiver*, Args...);
static constexpr bool is_method = true;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename Method, typename ReceiverPtr, typename... RunArgs>
static R Invoke(Method method,
ReceiverPtr&& receiver_ptr,
RunArgs&&... args) {
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
}
};
#if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
// For __stdcall methods.
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (__stdcall Receiver::*)(Args...)>
: public FunctorTraits<R (Receiver::*)(Args...)> {};
// For __stdcall const methods.
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (__stdcall Receiver::*)(Args...) const>
: public FunctorTraits<R (Receiver::*)(Args...) const> {};
#endif // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
#ifdef __cpp_noexcept_function_type
// noexcept makes a distinct function type in C++17.
// I.e. `void(*)()` and `void(*)() noexcept` are same in pre-C++17, and
// different in C++17.
template <typename R, typename... Args>
struct FunctorTraits<R (*)(Args...) noexcept> : FunctorTraits<R (*)(Args...)> {
};
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...) noexcept>
: FunctorTraits<R (Receiver::*)(Args...)> {};
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...) const noexcept>
: FunctorTraits<R (Receiver::*)(Args...) const> {};
#endif
// For IgnoreResults.
template <typename T>
struct FunctorTraits<IgnoreResultHelper<T>> : FunctorTraits<T> {
using RunType =
typename ForceVoidReturn<typename FunctorTraits<T>::RunType>::RunType;
template <typename IgnoreResultType, typename... RunArgs>
static void Invoke(IgnoreResultType&& ignore_result_helper,
RunArgs&&... args) {
FunctorTraits<T>::Invoke(
std::forward<IgnoreResultType>(ignore_result_helper).functor_,
std::forward<RunArgs>(args)...);
}
};
// For OnceCallbacks.
template <typename R, typename... Args>
struct FunctorTraits<OnceCallback<R(Args...)>> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = true;
static constexpr bool is_stateless = true;
template <typename CallbackType, typename... RunArgs>
static R Invoke(CallbackType&& callback, RunArgs&&... args) {
DCHECK(!callback.is_null());
return std::forward<CallbackType>(callback).Run(
std::forward<RunArgs>(args)...);
}
};
// For RepeatingCallbacks.
template <typename R, typename... Args>
struct FunctorTraits<RepeatingCallback<R(Args...)>> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = true;
static constexpr bool is_stateless = true;
template <typename CallbackType, typename... RunArgs>
static R Invoke(CallbackType&& callback, RunArgs&&... args) {
DCHECK(!callback.is_null());
return std::forward<CallbackType>(callback).Run(
std::forward<RunArgs>(args)...);
}
};
template <typename Functor>
using MakeFunctorTraits = FunctorTraits<std::decay_t<Functor>>;
// StorageTraits<>
//
// See description at top of file.
template <typename T>
struct StorageTraits {
using Type = T;
};
// For T*, store as UnretainedWrapper<T> for safety, as it internally uses
// raw_ptr<T> (when possible).
template <typename T>
struct StorageTraits<T*> {
using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle>;
};
// For raw_ptr<T>, store as UnretainedWrapper<T> for safety. This may seem
// contradictory, but this ensures guaranteed protection for the pointer even
// during execution of callbacks with parameters of type raw_ptr<T>.
template <typename T, RawPtrTraits PtrTraits>
struct StorageTraits<raw_ptr<T, PtrTraits>> {
using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle, PtrTraits>;
};
// Unwrap std::reference_wrapper and store it in a custom wrapper so that
// references are also protected with raw_ptr<T>.
template <typename T>
struct StorageTraits<std::reference_wrapper<T>> {
using Type = UnretainedRefWrapper<T, unretained_traits::MayNotDangle>;
};
template <typename T>
using MakeStorageType = typename StorageTraits<std::decay_t<T>>::Type;
// InvokeHelper<>
//
// There are 2 logical InvokeHelper<> specializations: normal, WeakCalls.
//
// The normal type just calls the underlying runnable.
//
// WeakCalls need special syntax that is applied to the first argument to check
// if they should no-op themselves.
template <bool is_weak_call, typename ReturnType, size_t... indices>
struct InvokeHelper;
template <typename ReturnType, size_t... indices>
struct InvokeHelper<false, ReturnType, indices...> {
template <typename Functor, typename BoundArgsTuple, typename... RunArgs>
static inline ReturnType MakeItSo(Functor&& functor,
BoundArgsTuple&& bound,
RunArgs&&... args) {
using Traits = MakeFunctorTraits<Functor>;
return Traits::Invoke(
std::forward<Functor>(functor),
Unwrap(std::get<indices>(std::forward<BoundArgsTuple>(bound)))...,
std::forward<RunArgs>(args)...);
}
};
template <typename ReturnType, size_t index_target, size_t... index_tail>
struct InvokeHelper<true, ReturnType, index_target, index_tail...> {
// WeakCalls are only supported for functions with a void return type.
// Otherwise, the function result would be undefined if the WeakPtr<>
// is invalidated.
static_assert(std::is_void_v<ReturnType>,
"WeakPtrs can only bind to methods without return values.");
template <typename Functor, typename BoundArgsTuple, typename... RunArgs>
static inline void MakeItSo(Functor&& functor,
BoundArgsTuple&& bound,
RunArgs&&... args) {
static_assert(index_target == 0);
// Note the validity of the weak pointer should be tested _after_ it is
// unwrapped, otherwise it creates a race for weak pointer implementations
// that allow cross-thread usage and perform `Lock()` in Unwrap() traits.
const auto& target = Unwrap(std::get<0>(bound));
if (!target) {
return;
}
using Traits = MakeFunctorTraits<Functor>;
Traits::Invoke(
std::forward<Functor>(functor), target,
Unwrap(std::get<index_tail>(std::forward<BoundArgsTuple>(bound)))...,
std::forward<RunArgs>(args)...);
}
};
// Invoker<>
//
// See description at the top of the file.
template <typename StorageType, typename UnboundRunType>
struct Invoker;
template <typename StorageType, typename R, typename... UnboundArgs>
struct Invoker<StorageType, R(UnboundArgs...)> {
static R RunOnce(BindStateBase* base,
PassingType<UnboundArgs>... unbound_args) {
// Local references to make debugger stepping easier. If in a debugger,
// you really want to warp ahead and step through the
// InvokeHelper<>::MakeItSo() call below.
StorageType* storage = static_cast<StorageType*>(base);
static constexpr size_t num_bound_args =
std::tuple_size_v<decltype(storage->bound_args_)>;
return RunImpl(std::move(storage->functor_),
std::move(storage->bound_args_),
std::make_index_sequence<num_bound_args>(),
std::forward<UnboundArgs>(unbound_args)...);
}
static R Run(BindStateBase* base, PassingType<UnboundArgs>... unbound_args) {
// Local references to make debugger stepping easier. If in a debugger,
// you really want to warp ahead and step through the
// InvokeHelper<>::MakeItSo() call below.
const StorageType* storage = static_cast<StorageType*>(base);
static constexpr size_t num_bound_args =
std::tuple_size_v<decltype(storage->bound_args_)>;
return RunImpl(storage->functor_, storage->bound_args_,
std::make_index_sequence<num_bound_args>(),
std::forward<UnboundArgs>(unbound_args)...);
}
private:
template <typename Functor, typename BoundArgsTuple, size_t... indices>
static inline R RunImpl(Functor&& functor,
BoundArgsTuple&& bound,
std::index_sequence<indices...> seq,
UnboundArgs&&... unbound_args) {
static constexpr bool is_method = MakeFunctorTraits<Functor>::is_method;
using DecayedArgsTuple = std::decay_t<BoundArgsTuple>;
#if BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
RawPtrAsanBoundArgTracker raw_ptr_asan_bound_arg_tracker;
raw_ptr_asan_bound_arg_tracker.AddArgs(
std::get<indices>(std::forward<BoundArgsTuple>(bound))...,
std::forward<UnboundArgs>(unbound_args)...);
#endif // BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
static constexpr bool is_weak_call =
IsWeakMethod<is_method,
std::tuple_element_t<indices, DecayedArgsTuple>...>();
// Do not `Unwrap()` here, as that immediately triggers dangling pointer
// detection. Dangling pointer detection should only be triggered if the
// callback is not cancelled, but cancellation status is not determined
// until later inside the InvokeHelper::MakeItSo specialization for weak
// calls.
//
// Dangling pointers when invoking a cancelled callback are not considered
// a memory safety error because protecting raw pointers usage with weak
// receivers (where the weak receiver usually own the pointed objects) is a
// common and broadly used pattern in the codebase.
return InvokeHelper<is_weak_call, R, indices...>::MakeItSo(
std::forward<Functor>(functor), std::forward<BoundArgsTuple>(bound),
std::forward<UnboundArgs>(unbound_args)...);
}
};
// Extracts necessary type info from Functor and BoundArgs.
// Used to implement MakeUnboundRunType, BindOnce and BindRepeating.
template <typename Functor, typename... BoundArgs>
struct BindTypeHelper {
static constexpr size_t num_bounds = sizeof...(BoundArgs);
using FunctorTraits = MakeFunctorTraits<Functor>;
// Example:
// When Functor is `double (Foo::*)(int, const std::string&)`, and BoundArgs
// is a template pack of `Foo*` and `int16_t`:
// - RunType is `double(Foo*, int, const std::string&)`,
// - ReturnType is `double`,
// - RunParamsList is `TypeList<Foo*, int, const std::string&>`,
// - BoundParamsList is `TypeList<Foo*, int>`,
// - UnboundParamsList is `TypeList<const std::string&>`,
// - BoundArgsList is `TypeList<Foo*, int16_t>`,
// - UnboundRunType is `double(const std::string&)`.
using RunType = typename FunctorTraits::RunType;
using ReturnType = ExtractReturnType<RunType>;
using RunParamsList = ExtractArgs<RunType>;
using BoundParamsList = TakeTypeListItem<num_bounds, RunParamsList>;
using UnboundParamsList = DropTypeListItem<num_bounds, RunParamsList>;
using BoundArgsList = TypeList<BoundArgs...>;
using UnboundRunType = MakeFunctionType<ReturnType, UnboundParamsList>;
};
template <typename Functor>
requires(FunctorTraits<Functor>::is_nullable)
constexpr bool IsNull(const Functor& functor) {
return !functor;
}
template <typename Functor>
requires(!FunctorTraits<Functor>::is_nullable)
constexpr bool IsNull(const Functor&) {
return false;
}
// Used by QueryCancellationTraits below.
template <typename Functor, typename BoundArgsTuple, size_t... indices>
bool QueryCancellationTraitsImpl(BindStateBase::CancellationQueryMode mode,
const Functor& functor,
const BoundArgsTuple& bound_args,
std::index_sequence<indices...>) {
switch (mode) {
case BindStateBase::IS_CANCELLED:
return CallbackCancellationTraits<Functor, BoundArgsTuple>::IsCancelled(
functor, std::get<indices>(bound_args)...);
case BindStateBase::MAYBE_VALID:
return CallbackCancellationTraits<Functor, BoundArgsTuple>::MaybeValid(
functor, std::get<indices>(bound_args)...);
}
NOTREACHED();
return false;
}
// Relays |base| to corresponding CallbackCancellationTraits<>::Run(). Returns
// true if the callback |base| represents is canceled.
template <typename BindStateType>
bool QueryCancellationTraits(const BindStateBase* base,
BindStateBase::CancellationQueryMode mode) {
const BindStateType* storage = static_cast<const BindStateType*>(base);
static constexpr size_t num_bound_args =
std::tuple_size_v<decltype(storage->bound_args_)>;
return QueryCancellationTraitsImpl(
mode, storage->functor_, storage->bound_args_,
std::make_index_sequence<num_bound_args>());
}
// The base case of BanUnconstructedRefCountedReceiver that checks nothing.
template <typename Functor, typename... Unused>
void BanUnconstructedRefCountedReceiver(Unused&&...) {}
// Asserts that Callback is not the first owner of a ref-counted receiver.
template <typename Functor, typename Receiver, typename... Unused>
requires(MakeFunctorTraits<Functor>::is_method &&
IsPointerV<std::decay_t<Receiver>> &&
IsRefCountedType<RemovePointerT<std::decay_t<Receiver>>>)
void BanUnconstructedRefCountedReceiver(Receiver&& receiver, Unused&&...) {
DCHECK(receiver);
// It's error prone to make the implicit first reference to ref-counted types.
// In the example below, base::BindOnce() would make the implicit first
// reference to the ref-counted Foo. If PostTask() failed or the posted task
// ran fast enough, the newly created instance could be destroyed before `oo`
// makes another reference.
// Foo::Foo() {
// base::ThreadPool::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, this));
// }
//
// scoped_refptr<Foo> oo = new Foo();
//
// Hence, base::Bind{Once,Repeating}() refuses to create the first reference
// to ref-counted objects, and DCHECK()s otherwise. As above, that typically
// happens around PostTask() in their constructor, and such objects can be
// destroyed before `new` returns if the task resolves fast enough.
//
// Instead of doing the above, please consider adding a static constructor,
// and keep the first reference alive explicitly.
// // static
// scoped_refptr<Foo> Foo::Create() {
// auto foo = base::WrapRefCounted(new Foo());
// base::ThreadPool::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, foo));
// return foo;
// }
//
// Foo::Foo() {}
//
// scoped_refptr<Foo> oo = Foo::Create();
DCHECK(receiver->HasAtLeastOneRef());
}
// BindState<>
//
// This stores all the state passed into Bind().
template <typename Functor, typename... BoundArgs>
struct BindState final : BindStateBase {
using IsCancellable = std::bool_constant<
CallbackCancellationTraits<Functor,
std::tuple<BoundArgs...>>::is_cancellable>;
template <typename ForwardFunctor, typename... ForwardBoundArgs>
static BindState* Create(BindStateBase::InvokeFuncStorage invoke_func,
ForwardFunctor&& functor,
ForwardBoundArgs&&... bound_args) {
// Ban ref counted receivers that were not yet fully constructed to avoid
// a common pattern of racy situation.
BanUnconstructedRefCountedReceiver<ForwardFunctor>(bound_args...);
// IsCancellable is std::false_type if
// CallbackCancellationTraits<>::IsCancelled returns always false.
// Otherwise, it's std::true_type.
return new BindState(IsCancellable{}, invoke_func,
std::forward<ForwardFunctor>(functor),
std::forward<ForwardBoundArgs>(bound_args)...);
}
Functor functor_;
std::tuple<BoundArgs...> bound_args_;
private:
static constexpr bool kIsNestedCallback =
MakeFunctorTraits<Functor>::is_callback;
template <typename ForwardFunctor, typename... ForwardBoundArgs>
explicit BindState(std::true_type,
BindStateBase::InvokeFuncStorage invoke_func,
ForwardFunctor&& functor,
ForwardBoundArgs&&... bound_args)
: BindStateBase(invoke_func,
&Destroy,
&QueryCancellationTraits<BindState>),
functor_(std::forward<ForwardFunctor>(functor)),
bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
// We check the validity of nested callbacks (e.g., Bind(callback, ...)) in
// release builds to avoid null pointers from ending up in posted tasks,
// causing hard-to-diagnose crashes. Ideally we'd do this for all functors
// here, but that would have a large binary size impact.
if constexpr (kIsNestedCallback) {
CHECK(!IsNull(functor_));
} else {
DCHECK(!IsNull(functor_));
}
}
template <typename ForwardFunctor, typename... ForwardBoundArgs>
explicit BindState(std::false_type,
BindStateBase::InvokeFuncStorage invoke_func,
ForwardFunctor&& functor,
ForwardBoundArgs&&... bound_args)
: BindStateBase(invoke_func, &Destroy),
functor_(std::forward<ForwardFunctor>(functor)),
bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
// See above for CHECK/DCHECK rationale.
if constexpr (kIsNestedCallback) {
CHECK(!IsNull(functor_));
} else {
DCHECK(!IsNull(functor_));
}
}
~BindState() = default;
static void Destroy(const BindStateBase* self) {
delete static_cast<const BindState*>(self);
}
};
// Used to implement MakeBindStateType. The specializations below cover all
// cases. Each has the following public members:
// // The appropriate `BindState` specialization for the given params.
// using Type = BindState<std::decay_t<Functor>,
// MakeStorageType<BoundArgs>...>;
//
// // True iff all compile-time preconditions for using this specialization
// // are satisfied. Specializations that set this to `false` should use a
// // `static_assert` to explain why. See comments below on the "templated
// // struct with a lambda that asserts" pattern used to do this.
// static constexpr bool value = false;
template <bool is_method, typename Functor, typename... BoundArgs>
struct MakeBindStateTypeImpl;
template <typename Functor, typename... BoundArgs>
struct MakeBindStateTypeImpl<false, Functor, BoundArgs...> {
private:
// This "templated struct with a lambda that asserts" pattern is used
// repeatedly in Bind/Callback code to verify compile-time preconditions. The
// goal is to print only the root cause failure when users violate a
// precondition, and not also a host of resulting compile errors.
//
// There are three key aspects:
// 1. By placing the assertion inside a lambda that initializes a variable,
// the assertion will not be verified until the compiler tries to read
// the value of that variable. This allows the containing types to be
// complete. As a result, code that needs to know if the assertion failed
// can read the variable's value and get the right answer. (If we instead
// placed the assertion at struct scope, the resulting type would be
// incomplete when the assertion failed; in practice, reading a constexpr
// member of an incomplete type seems to return the default value
// regardless of what the code tried to set the value to, which makes it
// impossible for other code to check whether the assertion failed.)
// 2. Code that will not successfully compile unless the assertion holds is
// guarded by a constexpr if that checks the variable.
// 3. By placing the variable inside an independent, templated struct and
// naming it `value`, we allow checking multiple conditions via
// `std::conjunction_v<>`. This short-circuits type instantiation, so
// that when one condition fails, the others are never examined and thus
// never assert. As a result, we can verify dependent conditions without
// worrying that "if one fails, we'll get errors from several others".
// (This would not be true if we simply checked all the values with `&&`,
// which would instantiate all the types before evaluating the
// expression.)
//
// For caller convenience and to avoid potential repetition, the actual
// condition to be checked is always used as the default value of a template
// argument, so callers can simply instantiate the struct with no template
// params to verify the condition.
template <bool v =
!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value>
struct NoRawPtrsToRefCountedTypes {
static constexpr bool value = [] {
static_assert(
v, "A parameter is a refcounted type and needs scoped_refptr.");
return v;
}();
};
public:
using Type = BindState<std::decay_t<Functor>, MakeStorageType<BoundArgs>...>;
static constexpr bool value = NoRawPtrsToRefCountedTypes<>::value;
};
template <typename Functor>
struct MakeBindStateTypeImpl<true, Functor> {
using Type = BindState<std::decay_t<Functor>>;
static constexpr bool value = true;
};
template <typename Functor, typename Receiver, typename... BoundArgs>
struct MakeBindStateTypeImpl<true, Functor, Receiver, BoundArgs...> {
private:
using DecayedReceiver = std::decay_t<Receiver>;
using ReceiverStorageType =
typename MethodReceiverStorageType<DecayedReceiver>::Type;
template <bool v = !std::is_array_v<std::remove_reference_t<Receiver>>>
struct FirstBoundArgIsNotArray {
static constexpr bool value = [] {
static_assert(v, "First bound argument to a method cannot be an array.");
return v;
}();
};
template <bool v = !IsRawRefV<DecayedReceiver>>
struct ReceiverIsNotRawRef {
static constexpr bool value = [] {
static_assert(v, "Receivers may not be raw_ref<T>. If using a raw_ref<T> "
"here is safe and has no lifetime concerns, use "
"base::Unretained() and document why it's safe.");
return v;
}();
};
template <bool v = !IsPointerV<DecayedReceiver> ||
IsRefCountedType<RemovePointerT<DecayedReceiver>>>
struct ReceiverIsNotRawPtr {
static constexpr bool value = [] {
static_assert(v,
"Receivers may not be raw pointers. If using a raw pointer "
"here is safe and has no lifetime concerns, use "
"base::Unretained() and document why it's safe.");
return v;
}();
};
template <bool v =
!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value>
struct NoRawPtrsToRefCountedTypes {
static constexpr bool value = [] {
static_assert(
v, "A parameter is a refcounted type and needs scoped_refptr.");
return v;
}();
};
public:
using Type = BindState<std::decay_t<Functor>,
ReceiverStorageType,
MakeStorageType<BoundArgs>...>;
static constexpr bool value =
std::conjunction_v<FirstBoundArgIsNotArray<>,
ReceiverIsNotRawRef<>,
ReceiverIsNotRawPtr<>,
NoRawPtrsToRefCountedTypes<>>;
};
template <typename Functor, typename... BoundArgs>
using MakeBindStateType =
MakeBindStateTypeImpl<MakeFunctorTraits<Functor>::is_method,
Functor,
BoundArgs...>;
// Returns a RunType of bound functor.
// E.g. MakeUnboundRunType<R(A, B, C), A, B> is evaluated to R(C).
template <typename Functor, typename... BoundArgs>
using MakeUnboundRunType =
typename BindTypeHelper<Functor, BoundArgs...>::UnboundRunType;
// The implementation of TransformToUnwrappedType below.
template <bool is_once, typename T>
struct TransformToUnwrappedTypeImpl;
template <typename T>
struct TransformToUnwrappedTypeImpl<true, T> {
using StoredType = std::decay_t<T>;
using ForwardType = StoredType&&;
using Unwrapped = decltype(Unwrap(std::declval<ForwardType>()));
};
template <typename T>
struct TransformToUnwrappedTypeImpl<false, T> {
using StoredType = std::decay_t<T>;
using ForwardType = const StoredType&;
using Unwrapped = decltype(Unwrap(std::declval<ForwardType>()));
};
// Transform |T| into `Unwrapped` type, which is passed to the target function.
// Example:
// In is_once == true case,
// `int&&` -> `int&&`,
// `const int&` -> `int&&`,
// `OwnedWrapper<int>&` -> `int*&&`.
// In is_once == false case,
// `int&&` -> `const int&`,
// `const int&` -> `const int&`,
// `OwnedWrapper<int>&` -> `int* const &`.
template <bool is_once, typename T>
using TransformToUnwrappedType =
typename TransformToUnwrappedTypeImpl<is_once, T>::Unwrapped;
// Converts `this` arguments to underlying pointer types. E.g.
// `int*` -> `int*`
// `std::unique_ptr<int>` -> `int*`
// `int` -> (assertion failure; `this` must be a pointer-like object)
template <typename T>
struct UnderlyingReceiverType {
private:
// Pointer-like receivers use a different specialization, so this never
// succeeds.
template <bool v = AlwaysFalse<T>>
struct ReceiverMustBePointerLike {
static constexpr bool value = [] {
static_assert(v,
"Cannot convert `this` argument to address. Method calls "
"must be bound using a pointer-like `this` argument.");
return v;
}();
};
public:
// These members are similar in intent to those in `MakeBindStateTypeImpl`;
// see comments there.
using Type = T;
static constexpr bool value = ReceiverMustBePointerLike<>::value;
};
template <typename T>
requires requires(T&& t) { std::to_address(t); }
struct UnderlyingReceiverType<T> {
using Type = decltype(std::to_address(std::declval<T>()));
static constexpr bool value = true;
};
// Transforms |Args| into `Unwrapped` types, and packs them into a TypeList.
// If |is_method| is true, tries to dereference the first argument to support
// smart pointers.
template <bool is_once, bool is_method, typename... Args>
struct MakeUnwrappedTypeList {
// These members are similar in intent to those in `MakeBindStateTypeImpl`;
// see comments there.
using Type = TypeList<TransformToUnwrappedType<is_once, Args>...>;
static constexpr bool value = true;
};
// Performs special handling for this pointers.
// Example:
// int* -> int*,
// std::unique_ptr<int> -> int*.
template <bool is_once, typename Receiver, typename... Args>
struct MakeUnwrappedTypeList<is_once, true, Receiver, Args...> {
private:
using ReceiverStorageType =
typename MethodReceiverStorageType<std::decay_t<Receiver>>::Type;
using UnwrappedReceiver =
TransformToUnwrappedType<is_once, ReceiverStorageType>;
using UnderlyingReceiver = UnderlyingReceiverType<UnwrappedReceiver>;
public:
using Type = TypeList<typename UnderlyingReceiver::Type,
TransformToUnwrappedType<is_once, Args>...>;
static constexpr bool value = UnderlyingReceiver::value;
};
// IsOnceCallback<T> is a std::true_type if |T| is a OnceCallback.
template <typename T>
struct IsOnceCallback : std::false_type {};
template <typename Signature>
struct IsOnceCallback<OnceCallback<Signature>> : std::true_type {};
// IsUnretainedMayDangle is true if StorageType is of type
// `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>.
// Note that it is false for unretained_traits::MayDangleUntriaged.
template <typename StorageType>
inline constexpr bool IsUnretainedMayDangle = false;
template <typename T, RawPtrTraits PtrTraits>
inline constexpr bool IsUnretainedMayDangle<
UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>> = true;
// UnretainedAndRawPtrHaveCompatibleTraits is true if StorageType is of type
// `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits1>` and
// FunctionParamType is of type `raw_ptr<T, PtrTraits2>`, and the former's
// ::GetPtrType is the same type as the latter.
template <typename StorageType, typename FunctionParamType>
inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits = false;
template <typename T,
RawPtrTraits PtrTraitsInUnretained,
RawPtrTraits PtrTraitsInReceiver>
inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits<
UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraitsInUnretained>,
raw_ptr<T, PtrTraitsInReceiver>> =
std::is_same_v<
typename UnretainedWrapper<T,
unretained_traits::MayDangle,
PtrTraitsInUnretained>::GetPtrType,
raw_ptr<T, PtrTraitsInReceiver>>;
// Helpers to make error messages slightly more readable.
template <int i>
struct BindArgument {
template <typename ForwardingType>
struct ForwardedAs {
template <typename FunctorParamType>
struct ToParamWithType {
static constexpr bool kRawPtr = IsRawPtrV<FunctorParamType>;
static constexpr bool kCanBeForwardedToBoundFunctor =
std::is_convertible_v<ForwardingType, FunctorParamType>;
// If the bound type can't be forwarded then test if `FunctorParamType` is
// a non-const lvalue reference and a reference to the unwrapped type
// *could* have been successfully forwarded.
static constexpr bool kNonConstRefParamMustBeWrapped =
kCanBeForwardedToBoundFunctor ||
!(std::is_lvalue_reference_v<FunctorParamType> &&
!std::is_const_v<std::remove_reference_t<FunctorParamType>> &&
std::is_convertible_v<std::decay_t<ForwardingType>&,
FunctorParamType>);
// Note that this intentionally drops the const qualifier from
// `ForwardingType`, to test if it *could* have been successfully
// forwarded if `Passed()` had been used.
static constexpr bool kMoveOnlyTypeMustUseBasePassed =
kCanBeForwardedToBoundFunctor ||
!std::is_convertible_v<std::decay_t<ForwardingType>&&,
FunctorParamType>;
};
};
template <typename BoundAsType>
struct BoundAs {
template <typename StorageType>
struct StoredAs {
static constexpr bool kBindArgumentCanBeCaptured =
std::is_constructible_v<StorageType, BoundAsType>;
// Note that this intentionally drops the const qualifier from
// `BoundAsType`, to test if it *could* have been successfully bound if
// `std::move()` had been used.
static constexpr bool kMoveOnlyTypeMustUseStdMove =
kBindArgumentCanBeCaptured ||
!std::is_constructible_v<StorageType, std::decay_t<BoundAsType>&&>;
};
};
template <typename FunctionParamType>
struct ToParamWithType {
template <typename StorageType>
struct StoredAs {
template <bool is_method>
// true if we are handling `this` parameter.
static constexpr bool kParamIsThisPointer = is_method && i == 0;
// true if the current parameter is of type `raw_ptr<T>` with
// `RawPtrTraits::kMayDangle` trait (e.g. `MayBeDangling<T>`).
static constexpr bool kParamIsDanglingRawPtr =
IsRawPtrMayDangleV<FunctionParamType>;
// true if the bound parameter is of type
// `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>`.
static constexpr bool kBoundPtrMayDangle =
IsUnretainedMayDangle<StorageType>;
// true if bound parameter of type `UnretainedWrapper` and parameter of
// type `raw_ptr` have compatible `RawPtrTraits`.
static constexpr bool kMayBeDanglingTraitsCorrectness =
UnretainedAndRawPtrHaveCompatibleTraits<StorageType,
FunctionParamType>;
// true if the receiver argument **must** be of type `MayBeDangling<T>`.
static constexpr bool kMayBeDanglingMustBeUsed =
kBoundPtrMayDangle && kParamIsDanglingRawPtr;
// true iff:
// - bound parameter is of type
// `UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>`
// - the receiving argument is of type `MayBeDangling<T>`
template <bool is_method>
static constexpr bool kMayBeDanglingPtrPassedCorrectly =
kParamIsThisPointer<is_method> ||
kBoundPtrMayDangle == kParamIsDanglingRawPtr;
// true if:
// - MayBeDangling<T> must not be used as receiver parameter.
// OR
// - MayBeDangling<T> must be used as receiver parameter and its traits
// are matching Unretained traits.
static constexpr bool kUnsafeDanglingAndMayBeDanglingHaveMatchingTraits =
!kMayBeDanglingMustBeUsed || kMayBeDanglingTraitsCorrectness;
};
};
};
// Helper to assert that parameter |i| of type |Arg| can be bound, which means:
// - |Arg| can be retained internally as |Storage|.
// - |Arg| can be forwarded as |Unwrapped| to |Param|.
template <int i,
bool is_method,
typename Arg,
typename Storage,
typename Unwrapped,
typename Param>
struct ParamCanBeBound {
private:
using UnwrappedParam = BindArgument<i>::template ForwardedAs<
Unwrapped>::template ToParamWithType<Param>;
using ParamStorage = BindArgument<i>::template ToParamWithType<
Param>::template StoredAs<Storage>;
using BoundStorage =
BindArgument<i>::template BoundAs<Arg>::template StoredAs<Storage>;
// We forbid callbacks from using raw_ptr as a parameter. However, we allow
// `MayBeDangling<T>` iff the callback argument was created using
// `base::UnsafeDangling`.
template <bool v = !UnwrappedParam::kRawPtr ||
ParamStorage::kMayBeDanglingMustBeUsed>
struct NotRawPtr {
static constexpr bool value = [] {
static_assert(v, "base::Bind() target functor has a parameter of type "
"raw_ptr<T>. raw_ptr<T> should not be used for function "
"parameters; please use T* or T& instead.");
return v;
}();
};
// A bound functor must take a dangling pointer argument (e.g. bound using the
// `UnsafeDangling` helper) as a `MayBeDangling<T>`, to make it clear that the
// pointee's lifetime must be externally validated before using it. For
// methods, exempt a bound receiver (i.e. the this pointer) as it is not
// passed as a regular function argument.
template <bool v = ParamStorage::template kMayBeDanglingPtrPassedCorrectly<
is_method>>
struct MayBeDanglingPtrPassedCorrectly {
static constexpr bool value = [] {
static_assert(v, "base::UnsafeDangling() pointers must be received by "
"functors with MayBeDangling<T> as parameter.");
return v;
}();
};
template <bool v =
ParamStorage::kUnsafeDanglingAndMayBeDanglingHaveMatchingTraits>
struct UnsafeDanglingAndMayBeDanglingHaveMatchingTraits {
static constexpr bool value = [] {
static_assert(
v,
"MayBeDangling<T> parameter must receive the same RawPtrTraits as "
"the one passed to the corresponding base::UnsafeDangling() call.");
return v;
}();
};
// With `BindRepeating`, there are two decision points for how to handle a
// move-only type:
//
// 1. Whether the move-only argument should be moved into the internal
// `BindState`. Either `std::move()` or `Passed` is sufficient to trigger
// move-only semantics.
// 2. Whether or not the bound, move-only argument should be moved to the
// bound functor when invoked. When the argument is bound with `Passed`,
// invoking the callback will destructively move the bound, move-only
// argument to the bound functor. In contrast, if the argument is bound
// with `std::move()`, `RepeatingCallback` will attempt to call the bound
// functor with a constant reference to the bound, move-only argument. This
// will fail if the bound functor accepts that argument by value, since the
// argument cannot be copied. It is this latter case that this
// assertion aims to catch.
//
// In contrast, `BindOnce()` only has one decision point. Once a move-only
// type is captured by value into the internal `BindState`, the bound,
// move-only argument will always be moved to the functor when invoked.
// Failure to use std::move will simply fail the
// `MoveOnlyTypeMustUseStdMove` assertion below instead.
//
// Note: `Passed()` is a legacy of supporting move-only types when repeating
// callbacks were the only callback type. A `RepeatingCallback` with a
// `Passed()` argument is really a `OnceCallback` and should eventually be
// migrated.
template <bool v = UnwrappedParam::kMoveOnlyTypeMustUseBasePassed>
struct MoveOnlyTypeMustUseBasePassed {
static constexpr bool value = [] {
static_assert(v,
"base::BindRepeating() argument is a move-only type. Use "
"base::Passed() instead of std::move() to transfer "
"ownership from the callback to the bound functor.");
return v;
}();
};
template <bool v = UnwrappedParam::kNonConstRefParamMustBeWrapped>
struct NonConstRefParamMustBeWrapped {
static constexpr bool value = [] {
static_assert(v,
"Bound argument for non-const reference parameter must be "
"wrapped in std::ref() or base::OwnedRef().");
return v;
}();
};
template <bool v = UnwrappedParam::kCanBeForwardedToBoundFunctor>
struct CanBeForwardedToBoundFunctor {
static constexpr bool value = [] {
static_assert(v,
"Type mismatch between bound argument and bound functor's "
"parameter.");
return v;
}();
};
template <bool v = BoundStorage::kMoveOnlyTypeMustUseStdMove>
struct MoveOnlyTypeMustUseStdMove {
static constexpr bool value = [] {
static_assert(v,
"Attempting to bind a move-only type. Use std::move() to "
"transfer ownership to the created callback.");
return v;
}();
};
template <bool v = BoundStorage::kBindArgumentCanBeCaptured>
struct BindArgumentCanBeCaptured {
static constexpr bool value = [] {
// In practice, failing this precondition should be rare, as the storage
// type is deduced from the arguments passed to
// `BindOnce()`/`BindRepeating()`.
static_assert(
v, "Cannot capture argument: is the argument copyable or movable?");
return v;
}();
};
public:
static constexpr bool value =
std::conjunction_v<NotRawPtr<>,
MayBeDanglingPtrPassedCorrectly<>,
UnsafeDanglingAndMayBeDanglingHaveMatchingTraits<>,
MoveOnlyTypeMustUseBasePassed<>,
NonConstRefParamMustBeWrapped<>,
CanBeForwardedToBoundFunctor<>,
MoveOnlyTypeMustUseStdMove<>,
BindArgumentCanBeCaptured<>>;
};
// Takes three same-length `TypeList`s, and checks `ParamCanBeBound` for each
// triple.
template <bool is_method,
typename Index,
typename Args,
typename UnwrappedTypeList,
typename ParamsList>
struct ParamsCanBeBound {
static constexpr bool value = false;
};
template <bool is_method,
size_t... Ns,
typename... Args,
typename... UnwrappedTypes,
typename... Params>
struct ParamsCanBeBound<is_method,
std::index_sequence<Ns...>,
TypeList<Args...>,
TypeList<UnwrappedTypes...>,
TypeList<Params...>> {
static constexpr bool value =
std::conjunction_v<ParamCanBeBound<Ns,
is_method,
Args,
std::decay_t<Args>,
UnwrappedTypes,
Params>...>;
};
template <typename T>
inline constexpr bool kBindArgIsBasePassed = false;
template <typename T>
inline constexpr bool kBindArgIsBasePassed<PassedWrapper<T>> = true;
// Core implementation of Bind variants, which checks common preconditions
// before returning an appropriate callback.
template <template <typename> class CallbackT>
struct BindHelper {
private:
template <
typename Functor,
bool v =
!is_instantiation<FunctionRef, std::remove_cvref_t<Functor>> &&
!is_instantiation<absl::FunctionRef, std::remove_cvref_t<Functor>>>
struct NotFunctionRef {
static constexpr bool value = [] {
static_assert(v, "base::Bind{Once,Repeating} require strong ownership: "
"non-owning function references may not be bound as the "
"functor due to potential lifetime issues.");
return v;
}();
};
template <typename Functor, bool v = MakeFunctorTraits<Functor>::is_stateless>
struct IsStateless {
static constexpr bool value = [] {
static_assert(v,
"Capturing lambdas and stateful lambdas are intentionally "
"not supported. Please use base::Bind{Once,Repeating} "
"directly to bind arguments.");
return v;
}();
};
public:
template <typename Functor, typename... Args>
static auto Bind(Functor&& functor, Args&&... args) {
// This block checks if each of the |args| matches to the corresponding
// param of the target function. This check does not affect the behavior of
// Bind, but its error message should be more readable.
static constexpr bool kIsOnce = IsOnceCallback<CallbackT<void()>>::value;
using Helper = BindTypeHelper<Functor, Args...>;
using FunctorTraits = typename Helper::FunctorTraits;
using BoundArgsList = typename Helper::BoundArgsList;
using UnwrappedArgsList =
MakeUnwrappedTypeList<kIsOnce, FunctorTraits::is_method, Args&&...>;
using BoundParamsList = typename Helper::BoundParamsList;
using BindStateType = MakeBindStateType<Functor, Args...>;
using UnboundRunType = MakeUnboundRunType<Functor, Args...>;
using CallbackType = CallbackT<UnboundRunType>;
if constexpr (std::conjunction_v<
NotFunctionRef<Functor>, IsStateless<Functor>,
UnwrappedArgsList,
ParamsCanBeBound<
FunctorTraits::is_method,
std::make_index_sequence<Helper::num_bounds>,
BoundArgsList, typename UnwrappedArgsList::Type,
BoundParamsList>,
BindStateType>) {
// Store the invoke func into PolymorphicInvoke before casting it to
// InvokeFuncStorage, so that we can ensure its type matches to
// PolymorphicInvoke, to which CallbackType will cast back.
using Invoker = Invoker<typename BindStateType::Type, UnboundRunType>;
using PolymorphicInvoke = typename CallbackType::PolymorphicInvoke;
PolymorphicInvoke invoke_func;
if constexpr (kIsOnce) {
invoke_func = Invoker::RunOnce;
} else {
invoke_func = Invoker::Run;
}
using InvokeFuncStorage = BindStateBase::InvokeFuncStorage;
return CallbackType(BindStateType::Type::Create(
reinterpret_cast<InvokeFuncStorage>(invoke_func),
std::forward<Functor>(functor), std::forward<Args>(args)...));
}
}
// Special cases for binding to a base::{Once, Repeating}Callback without
// extra bound arguments. We CHECK() the validity of callback to guard against
// null pointers accidentally ending up in posted tasks, causing hard-to-debug
// crashes.
template <typename Signature>
requires(std::same_as<CallbackT<Signature>, OnceCallback<Signature>>)
static OnceCallback<Signature> Bind(OnceCallback<Signature> callback) {
CHECK(callback);
return callback;
}
template <typename Signature>
requires(std::same_as<CallbackT<Signature>, OnceCallback<Signature>>)
static OnceCallback<Signature> Bind(RepeatingCallback<Signature> callback) {
CHECK(callback);
return callback;
}
template <typename Signature>
requires(std::same_as<CallbackT<Signature>, RepeatingCallback<Signature>>)
static RepeatingCallback<Signature> Bind(
RepeatingCallback<Signature> callback) {
CHECK(callback);
return callback;
}
};
// Implementation of `BindOnce()`, which checks preconditions before handing off
// to `BindHelper<>::Bind()`.
template <typename Functor, typename... Args>
struct BindOnceHelper {
private:
template <bool v = !IsOnceCallback<std::decay_t<Functor>>() ||
(std::is_rvalue_reference_v<Functor&&> &&
!std::is_const_v<std::remove_reference_t<Functor>>)>
struct OnceCallbackFunctorIsConstRvalue {
static constexpr bool value = [] {
static_assert(v, "BindOnce() requires non-const rvalue for OnceCallback "
"binding, i.e. base::BindOnce(std::move(callback)).");
return v;
}();
};
template <bool v = (... && !kBindArgIsBasePassed<std::decay_t<Args>>)>
struct NoBindArgIsBasePassed {
static constexpr bool value = [] {
static_assert(
v,
"Use std::move() instead of base::Passed() with base::BindOnce().");
return v;
}();
};
public:
static auto BindOnce(Functor&& functor, Args&&... args) {
if constexpr (std::conjunction_v<OnceCallbackFunctorIsConstRvalue<>,
NoBindArgIsBasePassed<>>) {
return BindHelper<OnceCallback>::Bind(std::forward<Functor>(functor),
std::forward<Args>(args)...);
}
}
};
// Implementation of `BindRepeating()`, which checks preconditions before
// handing off to `BindHelper<>::Bind()`.
template <typename Functor, typename... Args>
struct BindRepeatingHelper {
private:
template <bool v = !IsOnceCallback<std::decay_t<Functor>>()>
struct FunctorIsNotOnceCallback {
static constexpr bool value = [] {
static_assert(v,
"BindRepeating() cannot bind OnceCallback. Use BindOnce() "
"with std::move().");
return v;
}();
};
public:
static auto BindRepeating(Functor&& functor, Args&&... args) {
if constexpr (FunctorIsNotOnceCallback<>::value) {
return BindHelper<RepeatingCallback>::Bind(std::forward<Functor>(functor),
std::forward<Args>(args)...);
}
}
};
} // namespace internal
// An injection point to control |this| pointer behavior on a method invocation.
// If IsWeakReceiver<> is true_type for |T| and |T| is used for a receiver of a
// method, base::Bind cancels the method invocation if the receiver is tested as
// false.
// E.g. Foo::bar() is not called:
// struct Foo : base::SupportsWeakPtr<Foo> {
// void bar() {}
// };
//
// WeakPtr<Foo> oo = nullptr;
// base::BindOnce(&Foo::bar, oo).Run();
template <typename T>
struct IsWeakReceiver : std::false_type {};
template <typename T>
struct IsWeakReceiver<std::reference_wrapper<T>> : IsWeakReceiver<T> {};
template <typename T>
struct IsWeakReceiver<WeakPtr<T>> : std::true_type {};
// An injection point to control how objects are checked for maybe validity,
// which is an optimistic thread-safe check for full validity.
template <typename>
struct MaybeValidTraits {
template <typename T>
static bool MaybeValid(const T& o) {
return o.MaybeValid();
}
};
// An injection point to control how bound objects passed to the target
// function. BindUnwrapTraits<>::Unwrap() is called for each bound objects right
// before the target function is invoked.
template <typename>
struct BindUnwrapTraits {
template <typename T>
static T&& Unwrap(T&& o) {
return std::forward<T>(o);
}
};
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
struct BindUnwrapTraits<
internal::UnretainedWrapper<T, UnretainedTrait, PtrTraits>> {
static auto Unwrap(
const internal::UnretainedWrapper<T, UnretainedTrait, PtrTraits>& o) {
return o.get();
}
};
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
struct BindUnwrapTraits<
internal::UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>> {
static T& Unwrap(
const internal::UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>& o) {
return o.get();
}
};
template <typename T>
struct BindUnwrapTraits<internal::RetainedRefWrapper<T>> {
static T* Unwrap(const internal::RetainedRefWrapper<T>& o) { return o.get(); }
};
template <typename T, typename Deleter>
struct BindUnwrapTraits<internal::OwnedWrapper<T, Deleter>> {
static T* Unwrap(const internal::OwnedWrapper<T, Deleter>& o) {
return o.get();
}
};
template <typename T>
struct BindUnwrapTraits<internal::OwnedRefWrapper<T>> {
static T& Unwrap(const internal::OwnedRefWrapper<T>& o) { return o.get(); }
};
template <typename T>
struct BindUnwrapTraits<internal::PassedWrapper<T>> {
static T Unwrap(const internal::PassedWrapper<T>& o) { return o.Take(); }
};
#if BUILDFLAG(IS_WIN)
template <typename T>
struct BindUnwrapTraits<Microsoft::WRL::ComPtr<T>> {
static T* Unwrap(const Microsoft::WRL::ComPtr<T>& ptr) { return ptr.Get(); }
};
#endif
// CallbackCancellationTraits allows customization of Callback's cancellation
// semantics. By default, callbacks are not cancellable. A specialization should
// set is_cancellable = true and implement an IsCancelled() that returns if the
// callback should be cancelled.
template <typename Functor, typename BoundArgsTuple>
struct CallbackCancellationTraits {
static constexpr bool is_cancellable = false;
};
// Specialization for method bound to weak pointer receiver.
template <typename Functor, typename... BoundArgs>
requires(internal::IsWeakMethod<internal::FunctorTraits<Functor>::is_method,
BoundArgs...>::value)
struct CallbackCancellationTraits<Functor, std::tuple<BoundArgs...>> {
static constexpr bool is_cancellable = true;
template <typename Receiver, typename... Args>
static bool IsCancelled(const Functor&,
const Receiver& receiver,
const Args&...) {
return !receiver;
}
template <typename Receiver, typename... Args>
static bool MaybeValid(const Functor&,
const Receiver& receiver,
const Args&...) {
return MaybeValidTraits<Receiver>::MaybeValid(receiver);
}
};
// Specialization for a nested bind.
template <typename Signature, typename... BoundArgs>
struct CallbackCancellationTraits<OnceCallback<Signature>,
std::tuple<BoundArgs...>> {
static constexpr bool is_cancellable = true;
template <typename Functor>
static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
return functor.IsCancelled();
}
template <typename Functor>
static bool MaybeValid(const Functor& functor, const BoundArgs&...) {
return MaybeValidTraits<Functor>::MaybeValid(functor);
}
};
template <typename Signature, typename... BoundArgs>
struct CallbackCancellationTraits<RepeatingCallback<Signature>,
std::tuple<BoundArgs...>> {
static constexpr bool is_cancellable = true;
template <typename Functor>
static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
return functor.IsCancelled();
}
template <typename Functor>
static bool MaybeValid(const Functor& functor, const BoundArgs&...) {
return MaybeValidTraits<Functor>::MaybeValid(functor);
}
};
} // namespace base
#endif // BASE_FUNCTIONAL_BIND_INTERNAL_H_