blob: d72ccbd47061e58aa40e9f8867b8268be79ebd5c [file] [log] [blame]
// SPDX-License-Identifier: <GPL-2.0>
/*
* Simple synchronous userspace interface to SPI devices
*
* Copyright (C) 2006 SWAPP
* Andrea Paterniani <a.paterniani@swapp-eng.it>
* Copyright (C) 2007 David Brownell (simplification, cleanup)
*
*/
/*
* Modified by ST Microelectronics.
* <arach.mohammed.brahim@st.com>
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/ioctl.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/compat.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/acpi.h>
#include <linux/spi/spi.h>
#include <linux/spi/spidev.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/uaccess.h>
#include <linux/platform_data/spi-s3c64xx.h>
#undef ST33NFC_QCOM
#ifdef ST33NFC_QCOM
#include <linux/spi/spi-geni-qcom.h>
#endif /* ST33NFC_QCOM */
#ifndef GKI_MODULE
#define GKI_MODULE 1
#endif
#include "../st21nfc.h"
/*
* This supports access to SPI devices using normal userspace I/O calls.
* Note that while traditional UNIX/POSIX I/O semantics are half duplex,
* and often mask message boundaries, full SPI support requires full duplex
* transfers. There are several kinds of internal message boundaries to
* handle chipselect management and other protocol options.
*
* SPI has a character major number assigned. We allocate minor numbers
* dynamically using a bitmask. You must use hotplug tools, such as udev
* (or mdev with busybox) to create and destroy the /dev/st33spi device
* nodes, since there is no fixed association of minor numbers with any
* particular SPI bus or device.
*/
static int st33spi_major;
#define N_SPI_MINORS 2 /* ... up to 256 */
static DECLARE_BITMAP(minors, N_SPI_MINORS);
#define ST33SPI_IOC_RD_POWER _IOR(SPI_IOC_MAGIC, 99, __u32)
#define ST33SPI_IOC_WR_POWER _IOW(SPI_IOC_MAGIC, 99, __u32)
/* Bit masks for spi_device.mode management. Note that incorrect
* settings for some settings can cause *lots* of trouble for other
* devices on a shared bus:
*
* - CS_HIGH ... this device will be active when it shouldn't be
* - 3WIRE ... when active, it won't behave as it should
* - NO_CS ... there will be no explicit message boundaries; this
* is completely incompatible with the shared bus model
* - READY ... transfers may proceed when they shouldn't.
*
* REVISIT should changing those flags be privileged?
*/
#define SPI_MODE_MASK \
(SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST | SPI_3WIRE | \
SPI_LOOP | SPI_NO_CS | SPI_READY | SPI_TX_DUAL | SPI_TX_QUAD | \
SPI_RX_DUAL | SPI_RX_QUAD)
struct st33spi_data {
dev_t devt;
spinlock_t spi_lock;
struct spi_device *spi;
struct spi_device *spi_reset;
struct list_head device_entry;
/* TX/RX buffers are NULL unless this device is open (users > 0) */
struct mutex buf_lock;
unsigned int users;
u8 *tx_buffer;
u8 *rx_buffer;
u32 speed_hz;
/* GPIO for SE_POWER_REQ / SE_nRESET */
struct gpio_desc *gpiod_se_reset;
int power_gpio_mode;
int power_gpio;
int nfcc_needs_poweron;
int sehal_needs_poweron;
int se_is_poweron;
/* GPIO for SPI_CS */
struct s3c64xx_spi_csinfo *st33spi_csinfo;
struct pinctrl *pinctrl;
int spi_state;
};
#define POWER_MODE_NONE -1
#define POWER_MODE_ST33 2
static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_lock);
static unsigned int bufsiz = 4096;
module_param(bufsiz, uint, 0444);
MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
#define VERBOSE 0
#define DRIVER_VERSION "2.2.0"
/*-------------------------------------------------------------------------*/
static int st33spi_pinctrl_configure(struct st33spi_data *st33spi, bool enable)
{
struct pinctrl_state *state;
int rc;
dev_info(&st33spi->spi->dev, "st33spi: configure pinctrl: %d\n", enable);
if (IS_ERR(st33spi->pinctrl)) {
dev_err(&st33spi->spi->dev, "could not get pinctrl\n");
return -ENODEV;
}
if (enable)
state = pinctrl_lookup_state(st33spi->pinctrl, "on");
else
state = pinctrl_lookup_state(st33spi->pinctrl, "off");
if (!IS_ERR_OR_NULL(state)) {
rc = pinctrl_select_state(st33spi->pinctrl, state);
if (unlikely(rc))
dev_err(&st33spi->spi->dev, "st33spi: failed to set pinctrl state\n");
return rc;
}
dev_err(&st33spi->spi->dev, "st33spi: failed to get pinctrl state\n");
return -EIO;
}
static ssize_t st33spi_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct spi_device *spi;
struct st33spi_data *st33spi;
spi = to_spi_device(dev);
if (spi == NULL)
return -ENODEV;
st33spi = spi_get_drvdata(spi);
if (st33spi == NULL)
return -ENODEV;
return scnprintf(buf, PAGE_SIZE, "state:%d, st33spi_cs:%d\n",
st33spi->spi_state, gpio_get_value(st33spi->st33spi_csinfo->line));
}
static ssize_t st33spi_state_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct spi_device *spi;
struct st33spi_data *st33spi;
struct s3c64xx_spi_csinfo *cs;
int new_spi_state;
spi = to_spi_device(dev);
if (spi == NULL)
return -ENODEV;
st33spi = spi_get_drvdata(spi);
if (st33spi == NULL)
return -ENODEV;
cs = st33spi->st33spi_csinfo;
if (cs == NULL)
return -ENODEV;
if (!kstrtoint(buf, 10, &new_spi_state)) {
if (new_spi_state == 0) {
st33spi->spi_state = 0;
st33spi_pinctrl_configure(st33spi, false);
} else if (new_spi_state == 33) {
st33spi->spi_state = 1;
st33spi_pinctrl_configure(st33spi, true);
} else {
dev_err(dev, "%s: incorrect parameter\n", __func__);
return -EINVAL;
}
}
return count;
}
static DEVICE_ATTR_RW(st33spi_state);
static struct attribute *st33spi_attrs[] = {
&dev_attr_st33spi_state.attr,
NULL,
};
static struct attribute_group st33spi_attr_grp = {
.attrs = st33spi_attrs,
};
static ssize_t st33spi_sync(struct st33spi_data *st33spi,
struct spi_message *message)
{
int status;
struct spi_device *spi;
spin_lock_irq(&st33spi->spi_lock);
spi = st33spi->spi;
spin_unlock_irq(&st33spi->spi_lock);
if (spi == NULL)
status = -ESHUTDOWN;
else
status = spi_sync(spi, message);
if (status == 0)
status = message->actual_length;
return status;
}
static inline ssize_t st33spi_sync_write(struct st33spi_data *st33spi,
size_t len)
{
struct spi_transfer t = {
.tx_buf = st33spi->tx_buffer,
.len = len,
.speed_hz = st33spi->speed_hz,
};
struct spi_message m;
spi_message_init(&m);
spi_message_add_tail(&t, &m);
return st33spi_sync(st33spi, &m);
}
static inline ssize_t st33spi_sync_read(struct st33spi_data *st33spi,
size_t len)
{
struct spi_transfer t = {
.rx_buf = st33spi->rx_buffer,
.len = len,
.speed_hz = st33spi->speed_hz,
};
struct spi_message m;
spi_message_init(&m);
spi_message_add_tail(&t, &m);
return st33spi_sync(st33spi, &m);
}
/*-------------------------------------------------------------------------*/
/* Read-only message with current device setup */
static ssize_t st33spi_read(struct file *filp, char __user *buf, size_t count,
loff_t *f_pos)
{
struct st33spi_data *st33spi;
ssize_t status = 0;
/* chipselect only toggles at start or end of operation */
if (count > bufsiz)
return -EMSGSIZE;
st33spi = filp->private_data;
if (st33spi == NULL)
return -ENODEV;
if (!st33spi->spi_state) {
dev_warn(&st33spi->spi->dev, "st33spi: spi is not enabled, abort read process\n");
return -EFAULT;
}
dev_dbg(&st33spi->spi->dev, "st33spi Read: %zu bytes\n", count);
mutex_lock(&st33spi->buf_lock);
status = st33spi_sync_read(st33spi, count);
if (status > 0) {
unsigned long missing;
missing = copy_to_user(buf, st33spi->rx_buffer, status);
if (missing == status)
status = -EFAULT;
else
status = status - missing;
}
mutex_unlock(&st33spi->buf_lock);
dev_dbg(&st33spi->spi->dev, "st33spi Read: status: %zd\n", status);
return status;
}
/* Write-only message with current device setup */
static ssize_t st33spi_write(struct file *filp, const char __user *buf,
size_t count, loff_t *f_pos)
{
struct st33spi_data *st33spi;
ssize_t status = 0;
unsigned long missing;
/* chipselect only toggles at start or end of operation */
if (count > bufsiz)
return -EMSGSIZE;
st33spi = filp->private_data;
if (st33spi == NULL)
return -ENODEV;
if (!st33spi->spi_state) {
dev_warn(&st33spi->spi->dev, "st33spi: spi is not enabled, abort write process\n");
return -EFAULT;
}
dev_dbg(&st33spi->spi->dev, "st33spi Write: %zu bytes\n", count);
mutex_lock(&st33spi->buf_lock);
missing = copy_from_user(st33spi->tx_buffer, buf, count);
if (missing == 0)
status = st33spi_sync_write(st33spi, count);
else
status = -EFAULT;
mutex_unlock(&st33spi->buf_lock);
dev_dbg(&st33spi->spi->dev, "st33spi Write: status: %zd\n", status);
return status;
}
static int st33spi_message(struct st33spi_data *st33spi,
struct spi_ioc_transfer *u_xfers,
unsigned int n_xfers)
{
struct spi_message msg;
struct spi_transfer *k_xfers;
struct spi_transfer *k_tmp;
struct spi_ioc_transfer *u_tmp;
unsigned int n, total, tx_total, rx_total;
u8 *tx_buf, *rx_buf;
int status = -EFAULT;
spi_message_init(&msg);
k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
if (k_xfers == NULL)
return -ENOMEM;
/* Construct spi_message, copying any tx data to bounce buffer.
* We walk the array of user-provided transfers, using each one
* to initialize a kernel version of the same transfer.
*/
tx_buf = st33spi->tx_buffer;
rx_buf = st33spi->rx_buffer;
total = 0;
tx_total = 0;
rx_total = 0;
for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers; n;
n--, k_tmp++, u_tmp++) {
k_tmp->len = u_tmp->len;
total += k_tmp->len;
/* Since the function returns the total length of transfers
* on success, restrict the total to positive int values to
* avoid the return value looking like an error. Also check
* each transfer length to avoid arithmetic overflow.
*/
if (total > INT_MAX || k_tmp->len > INT_MAX) {
status = -EMSGSIZE;
goto done;
}
if (u_tmp->rx_buf) {
/* this transfer needs space in RX bounce buffer */
rx_total += k_tmp->len;
if (rx_total > bufsiz) {
status = -EMSGSIZE;
goto done;
}
k_tmp->rx_buf = rx_buf;
if (!access_ok((u8 __user *)(uintptr_t)u_tmp->rx_buf,
u_tmp->len))
goto done;
rx_buf += k_tmp->len;
}
if (u_tmp->tx_buf) {
/* this transfer needs space in TX bounce buffer */
tx_total += k_tmp->len;
if (tx_total > bufsiz) {
status = -EMSGSIZE;
goto done;
}
k_tmp->tx_buf = tx_buf;
if (copy_from_user(
tx_buf,
(const u8 __user *)(uintptr_t)u_tmp->tx_buf,
u_tmp->len))
goto done;
tx_buf += k_tmp->len;
}
k_tmp->cs_change = !!u_tmp->cs_change;
k_tmp->tx_nbits = u_tmp->tx_nbits;
k_tmp->rx_nbits = u_tmp->rx_nbits;
k_tmp->bits_per_word = u_tmp->bits_per_word;
k_tmp->delay_usecs = u_tmp->delay_usecs;
k_tmp->speed_hz = u_tmp->speed_hz;
if (!k_tmp->speed_hz)
k_tmp->speed_hz = st33spi->speed_hz;
#if VERBOSE
dev_dbg(&st33spi->spi->dev,
" xfer len %u %s%s%s%dbits %u usec %uHz\n", u_tmp->len,
u_tmp->rx_buf ? "rx " : "", u_tmp->tx_buf ? "tx " : "",
u_tmp->cs_change ? "cs " : "",
u_tmp->bits_per_word ?: st33spi->spi->bits_per_word,
u_tmp->delay_usecs,
u_tmp->speed_hz ?: st33spi->spi->max_speed_hz);
#endif
spi_message_add_tail(k_tmp, &msg);
}
status = st33spi_sync(st33spi, &msg);
if (status < 0)
goto done;
/* copy any rx data out of bounce buffer */
rx_buf = st33spi->rx_buffer;
for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
if (u_tmp->rx_buf) {
if (__copy_to_user((u8 __user *)(uintptr_t)u_tmp->rx_buf,
rx_buf, u_tmp->len)) {
status = -EFAULT;
goto done;
}
rx_buf += u_tmp->len;
}
}
status = total;
done:
kfree(k_xfers);
return status;
}
static struct spi_ioc_transfer *
st33spi_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
unsigned int *n_ioc)
{
struct spi_ioc_transfer *ioc;
u32 tmp;
/* Check type, command number and direction */
if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC ||
_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0)) ||
_IOC_DIR(cmd) != _IOC_WRITE)
return ERR_PTR(-ENOTTY);
tmp = _IOC_SIZE(cmd);
if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
return ERR_PTR(-EINVAL);
*n_ioc = tmp / sizeof(struct spi_ioc_transfer);
if (*n_ioc == 0)
return NULL;
/* copy into scratch area */
ioc = kmalloc(tmp, GFP_KERNEL);
if (!ioc)
return ERR_PTR(-ENOMEM);
if (__copy_from_user(ioc, u_ioc, tmp)) {
kfree(ioc);
return ERR_PTR(-EFAULT);
}
return ioc;
}
static void st33spi_power_off(struct st33spi_data *st33spi)
{
#ifdef WITH_SPI_CLK_MNGT
/* no need for the SPI clock to be enabled. */
dev_dbg(&st33spi->spi->dev,
"%s : disabling PMU clock of SPI subsystem\n", __func__);
mt_spi_disable_master_clk(st33spi->spi);
#endif /* WITH_SPI_CLK_MNGT */
st33spi->se_is_poweron = 0;
}
static void st33spi_power_on(struct st33spi_data *st33spi)
{
#ifdef WITH_SPI_CLK_MNGT
/* the SPI clock needs to be enabled. */
dev_dbg(&st33spi->spi->dev,
"%s : enabling PMU clock of SPI subsystem\n", __func__);
mt_spi_enable_master_clk(st33spi->spi);
#endif /* WITH_SPI_CLK_MNGT */
if (st33spi->power_gpio_mode == POWER_MODE_ST33) {
/* Just a pulse on SPI_nRESET */
gpiod_set_value_cansleep(st33spi->gpiod_se_reset, 1);
usleep_range(5000, 5500);
gpiod_set_value_cansleep(st33spi->gpiod_se_reset, 0);
dev_info(&st33spi->spi->dev, "%s : st33 set nReset to Low\n",
__func__);
usleep_range(3000, 4000);
}
st33spi->se_is_poweron = 1;
}
static void st33spi_power_set(struct st33spi_data *st33spi, int val)
{
if (!st33spi)
return;
dev_dbg(&st33spi->spi->dev, "st33spi sehal pwr_req: %d\n", val);
if (val) {
st33spi->sehal_needs_poweron = 1;
st33spi_power_on(st33spi);
} else {
st33spi->sehal_needs_poweron = 0;
if ((st33spi->se_is_poweron == 1) &&
(st33spi->nfcc_needs_poweron == 0))
/* we don t need power anymore */
st33spi_power_off(st33spi);
}
}
static int st33spi_power_get(struct st33spi_data *st33spi)
{
return gpiod_get_value_cansleep(st33spi->gpiod_se_reset);
}
static long st33spi_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
int err = 0;
int retval = 0;
struct st33spi_data *st33spi;
struct spi_device *spi;
u32 tmp;
unsigned int n_ioc;
struct spi_ioc_transfer *ioc;
/* Check type and command number */
if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
return -ENOTTY;
/* Check access direction once here; don't repeat below.
* IOC_DIR is from the user perspective, while access_ok is
* from the kernel perspective; so they look reversed.
*/
if (_IOC_DIR(cmd) & _IOC_READ)
err = !access_ok((void __user *)arg, _IOC_SIZE(cmd));
if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
err = !access_ok((void __user *)arg, _IOC_SIZE(cmd));
if (err)
return -EFAULT;
/* guard against device removal before, or while,
* we issue this ioctl.
*/
st33spi = filp->private_data;
spin_lock_irq(&st33spi->spi_lock);
spi = spi_dev_get(st33spi->spi);
spin_unlock_irq(&st33spi->spi_lock);
dev_dbg(&st33spi->spi->dev, "st33spi ioctl cmd %d\n", cmd);
if (spi == NULL)
return -ESHUTDOWN;
/* use the buffer lock here for triple duty:
* - prevent I/O (from us) so calling spi_setup() is safe;
* - prevent concurrent SPI_IOC_WR_* from morphing
* data fields while SPI_IOC_RD_* reads them;
* - SPI_IOC_MESSAGE needs the buffer locked "normally".
*/
mutex_lock(&st33spi->buf_lock);
switch (cmd) {
/* read requests */
case SPI_IOC_RD_MODE:
retval = __put_user(spi->mode & SPI_MODE_MASK,
(__u8 __user *)arg);
break;
case SPI_IOC_RD_MODE32:
retval = __put_user(spi->mode & SPI_MODE_MASK,
(__u32 __user *)arg);
break;
case SPI_IOC_RD_LSB_FIRST:
retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
(__u8 __user *)arg);
break;
case SPI_IOC_RD_BITS_PER_WORD:
retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
break;
case SPI_IOC_RD_MAX_SPEED_HZ:
retval = __put_user(st33spi->speed_hz, (__u32 __user *)arg);
break;
case ST33SPI_IOC_RD_POWER:
dev_dbg(&st33spi->spi->dev, "st33spi ST33SPI_IOC_RD_POWER\n");
retval = __put_user(st33spi_power_get(st33spi),
(__u32 __user *)arg);
break;
/* write requests */
case SPI_IOC_WR_MODE:
case SPI_IOC_WR_MODE32:
if (cmd == SPI_IOC_WR_MODE)
retval = __get_user(tmp, (u8 __user *)arg);
else
retval = __get_user(tmp, (u32 __user *)arg);
if (retval == 0) {
u32 save = spi->mode;
if (tmp & ~SPI_MODE_MASK) {
retval = -EINVAL;
break;
}
tmp |= spi->mode & ~SPI_MODE_MASK;
spi->mode = (u16)tmp;
retval = spi_setup(spi);
if (retval < 0)
spi->mode = save;
else
dev_dbg(&spi->dev, "spi mode %x\n", tmp);
}
break;
case SPI_IOC_WR_LSB_FIRST:
retval = __get_user(tmp, (__u8 __user *)arg);
if (retval == 0) {
u32 save = spi->mode;
if (tmp)
spi->mode |= SPI_LSB_FIRST;
else
spi->mode &= ~SPI_LSB_FIRST;
retval = spi_setup(spi);
if (retval < 0)
spi->mode = save;
else
dev_dbg(&spi->dev, "%csb first\n",
tmp ? 'l' : 'm');
}
break;
case SPI_IOC_WR_BITS_PER_WORD:
retval = __get_user(tmp, (__u8 __user *)arg);
if (retval == 0) {
u8 save = spi->bits_per_word;
spi->bits_per_word = tmp;
retval = spi_setup(spi);
if (retval < 0)
spi->bits_per_word = save;
else
dev_dbg(&spi->dev, "%d bits per word\n", tmp);
}
break;
case SPI_IOC_WR_MAX_SPEED_HZ:
retval = __get_user(tmp, (__u32 __user *)arg);
if (retval == 0) {
u32 save = spi->max_speed_hz;
spi->max_speed_hz = tmp;
retval = spi_setup(spi);
if (retval >= 0)
st33spi->speed_hz = tmp;
else
dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
spi->max_speed_hz = save;
}
break;
case ST33SPI_IOC_WR_POWER:
retval = __get_user(tmp, (__u32 __user *)arg);
dev_dbg(&st33spi->spi->dev,
"st33spi ST33SPI_IOC_WR_POWER %d\n", retval);
if (retval == 0 && st33spi->spi_state) {
st33spi_power_set(st33spi, tmp ? 1 : 0);
dev_dbg(&st33spi->spi->dev, "SE_POWER_REQ set: %d\n", tmp);
}
break;
default:
/* segmented and/or full-duplex I/O request */
/* Check message and copy into scratch area */
ioc = st33spi_get_ioc_message(
cmd, (struct spi_ioc_transfer __user *)arg, &n_ioc);
if (IS_ERR(ioc)) {
retval = PTR_ERR(ioc);
break;
}
if (!ioc)
break; /* n_ioc is also 0 */
/* translate to spi_message, execute */
retval = st33spi_message(st33spi, ioc, n_ioc);
kfree(ioc);
break;
}
mutex_unlock(&st33spi->buf_lock);
spi_dev_put(spi);
dev_dbg(&st33spi->spi->dev, "st33spi ioctl retval %d\n", retval);
return retval;
}
#ifdef CONFIG_COMPAT
static long st33spi_compat_ioc_message(struct file *filp, unsigned int cmd,
unsigned long arg)
{
struct spi_ioc_transfer __user *u_ioc;
int retval = 0;
struct st33spi_data *st33spi;
struct spi_device *spi;
unsigned int n_ioc, n;
struct spi_ioc_transfer *ioc;
u_ioc = (struct spi_ioc_transfer __user *)compat_ptr(arg);
if (!access_ok(u_ioc, _IOC_SIZE(cmd)))
return -EFAULT;
/* guard against device removal before, or while,
* we issue this ioctl.
*/
st33spi = filp->private_data;
spin_lock_irq(&st33spi->spi_lock);
spi = spi_dev_get(st33spi->spi);
spin_unlock_irq(&st33spi->spi_lock);
dev_dbg(&st33spi->spi->dev, "st33spi compat_ioctl cmd %d\n", cmd);
if (spi == NULL)
return -ESHUTDOWN;
/* SPI_IOC_MESSAGE needs the buffer locked "normally" */
mutex_lock(&st33spi->buf_lock);
/* Check message and copy into scratch area */
ioc = st33spi_get_ioc_message(cmd, u_ioc, &n_ioc);
if (IS_ERR(ioc)) {
retval = PTR_ERR(ioc);
goto done;
}
if (!ioc)
goto done; /* n_ioc is also 0 */
/* Convert buffer pointers */
for (n = 0; n < n_ioc; n++) {
ioc[n].rx_buf = (uintptr_t)compat_ptr(ioc[n].rx_buf);
ioc[n].tx_buf = (uintptr_t)compat_ptr(ioc[n].tx_buf);
}
/* translate to spi_message, execute */
retval = st33spi_message(st33spi, ioc, n_ioc);
kfree(ioc);
done:
mutex_unlock(&st33spi->buf_lock);
spi_dev_put(spi);
dev_dbg(&st33spi->spi->dev, "st33spi compat_ioctl retval %d\n", retval);
return retval;
}
static long st33spi_compat_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC &&
_IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0)) &&
_IOC_DIR(cmd) == _IOC_WRITE)
return st33spi_compat_ioc_message(filp, cmd, arg);
return st33spi_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
}
#else
#define st33spi_compat_ioctl NULL
#endif /* CONFIG_COMPAT */
static int st33spi_open(struct inode *inode, struct file *filp)
{
struct st33spi_data *st33spi = NULL;
int status = -ENXIO;
mutex_lock(&device_list_lock);
list_for_each_entry (st33spi, &device_list, device_entry) {
if (st33spi->devt == inode->i_rdev) {
status = 0;
break;
}
}
if (st33spi == NULL)
return -ENODEV;
if (status) {
dev_dbg(&st33spi->spi->dev, "st33spi: nothing for minor %d\n",
iminor(inode));
goto err_find_dev;
}
if (!st33spi->spi_state) {
dev_warn(&st33spi->spi->dev,
"st33spi: spi is not enabled, abort open process\n");
mutex_unlock(&device_list_lock);
return -EFAULT;
}
/* Authorize only 1 process to open the device. */
if (st33spi->users > 0) {
dev_err(&st33spi->spi->dev, "already open\n");
mutex_unlock(&device_list_lock);
return -EBUSY;
}
dev_dbg(&st33spi->spi->dev, "st33spi: open\n");
if (!st33spi->tx_buffer) {
st33spi->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
if (!st33spi->tx_buffer) {
status = -ENOMEM;
goto err_find_dev;
}
}
if (!st33spi->rx_buffer) {
st33spi->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
if (!st33spi->rx_buffer) {
status = -ENOMEM;
goto err_alloc_rx_buf;
}
}
st33spi->users++;
filp->private_data = st33spi;
nonseekable_open(inode, filp);
mutex_unlock(&device_list_lock);
dev_dbg(&st33spi->spi->dev, "st33spi: open - force power on\n");
st33spi_power_set(st33spi, 1);
return 0;
err_alloc_rx_buf:
kfree(st33spi->tx_buffer);
st33spi->tx_buffer = NULL;
err_find_dev:
mutex_unlock(&device_list_lock);
return status;
}
static int st33spi_release(struct inode *inode, struct file *filp)
{
struct st33spi_data *st33spi;
mutex_lock(&device_list_lock);
st33spi = filp->private_data;
filp->private_data = NULL;
dev_dbg(&st33spi->spi->dev, "st33spi: release\n");
/* last close? */
st33spi->users--;
if (!st33spi->users) {
int dofree;
dev_dbg(&st33spi->spi->dev,
"st33spi: release - may allow power off\n");
st33spi_power_set(st33spi, 0);
kfree(st33spi->tx_buffer);
st33spi->tx_buffer = NULL;
kfree(st33spi->rx_buffer);
st33spi->rx_buffer = NULL;
spin_lock_irq(&st33spi->spi_lock);
if (st33spi->spi)
st33spi->speed_hz = st33spi->spi->max_speed_hz;
/* ... after we unbound from the underlying device? */
dofree = ((st33spi->spi == NULL) &&
(st33spi->spi_reset == NULL));
spin_unlock_irq(&st33spi->spi_lock);
if (dofree)
kfree(st33spi);
}
mutex_unlock(&device_list_lock);
return 0;
}
static const struct file_operations st33spi_fops = {
.owner = THIS_MODULE,
/*
* REVISIT switch to aio primitives, so that userspace
* gets more complete API coverage. It'll simplify things
* too, except for the locking.
*/
.write = st33spi_write,
.read = st33spi_read,
.unlocked_ioctl = st33spi_ioctl,
.compat_ioctl = st33spi_compat_ioctl,
.open = st33spi_open,
.release = st33spi_release,
.llseek = no_llseek,
};
/*-------------------------------------------------------------------------*/
/*
* The main reason to have this class is to make mdev/udev create the
* /dev/st33spi character device nodes exposing our userspace API.
* It also simplifies memory management.
*/
static struct class *st33spi_class;
static const struct of_device_id st33spi_dt_ids[] = {
{ .compatible = "st,st33spi" },
{},
};
MODULE_DEVICE_TABLE(of, st33spi_dt_ids);
#ifdef CONFIG_ACPI
/* Placeholder SPI devices not to be used in production systems */
#define ST33SPI_ACPI_PLACEHOLDER 1
static const struct acpi_device_id st33spi_acpi_ids[] = {
/*
* The ACPI SPT000* devices are only meant for development and
* testing. Systems used in production should have a proper ACPI
* description of the connected peripheral and they should also
* use a proper driver instead of poking directly to the SPI bus
*/
{ "SPT0001", ST33SPI_ACPI_PLACEHOLDER },
{ "SPT0002", ST33SPI_ACPI_PLACEHOLDER },
{ "SPT0003", ST33SPI_ACPI_PLACEHOLDER },
{},
};
MODULE_DEVICE_TABLE(acpi, st33spi_acpi_ids);
static void st33spi_probe_acpi(struct spi_device *spi)
{
const struct acpi_device_id *id;
if (!has_acpi_companion(&spi->dev))
return;
id = acpi_match_device(st33spi_acpi_ids, &spi->dev);
if (WARN_ON(!id))
return;
}
#else
static inline void st33spi_probe_acpi(struct spi_device *spi)
{
}
#endif
/*-------------------------------------------------------------------------*/
static int st33spi_parse_dt(struct device *dev, struct st33spi_data *pdata)
{
struct device_node *np = dev->of_node;
struct device_node *data_np;
const char *power_mode;
int st33spi_state;
#ifndef GKI_MODULE
np = of_find_compatible_node(NULL, NULL, "st,st33spi");
#endif
if (!np) {
return -ENODEV;
}
/* Read power mode. */
power_mode = of_get_property(np, "power_mode", NULL);
if (!power_mode) {
dev_info(dev, "Default power mode: ST33\n");
pdata->power_gpio_mode = POWER_MODE_ST33;
} else if (!strcmp(power_mode, "ST33")) {
dev_info(dev, "Power mode: ST33\n");
pdata->power_gpio_mode = POWER_MODE_ST33;
} else if (!strcmp(power_mode, "none")) {
dev_info(dev, "Power mode: none\n");
pdata->power_gpio_mode = POWER_MODE_NONE;
} else {
dev_err(dev, "Power mode unknown: %s\n", power_mode);
return -EFAULT;
}
/* Get the Gpio */
if (pdata->power_gpio_mode == POWER_MODE_ST33) {
pdata->gpiod_se_reset =
devm_gpiod_get(dev, "esereset", GPIOD_OUT_LOW);
if (IS_ERR(pdata->gpiod_se_reset)) {
dev_err(dev, "Unable to request esereset %d\n",
IS_ERR(pdata->gpiod_se_reset));
return -ENODEV;
}
} else {
dev_err(dev, "ST54H mode not supported");
}
/* Read default st33spi state. */
data_np = of_get_child_by_name(np, "controller-data");
if (!data_np) {
dev_err(dev, "child node 'controller-data' not found\n");
return -ENODEV;
}
if (!of_property_read_u32(data_np, "cs-init-state", &st33spi_state)) {
pdata->spi_state = st33spi_state;
} else {
pdata->spi_state = 0;
}
dev_info(dev, "Default st33spi state: %d\n", pdata->spi_state);
pdata->pinctrl = devm_pinctrl_get(dev);
if (IS_ERR(pdata->pinctrl)) {
dev_err(dev, "could not get pinctrl\n");
return -ENODEV;
}
return 0;
}
static int st33spi_probe(struct spi_device *spi)
{
struct st33spi_data *st33spi;
int status;
unsigned long minor;
#ifdef ST33NFC_QCOM
struct device *dev = &spi->dev;
struct spi_geni_qcom_ctrl_data *spi_param;
#endif /* ST33NFC_QCOM */
#ifdef GKI_MODULE
/* Claim our 256 reserved device numbers. Then register a class
* that will key udev/mdev to add/remove /dev nodes. Last, register
* the driver which manages those device numbers.
*/
BUILD_BUG_ON(N_SPI_MINORS > 256);
st33spi_major =
__register_chrdev(0, 0, N_SPI_MINORS, "spi", &st33spi_fops);
dev_info(&spi->dev, "Loading st33spi driver, major: %d\n", st33spi_major);
st33spi_class = class_create(THIS_MODULE, "st33spi");
if (IS_ERR(st33spi_class)) {
unregister_chrdev(st33spi_major, "st33spi");
return PTR_ERR(st33spi_class);
}
#endif
/*
* st33spi should never be referenced in DT without a specific
* compatible string, it is a Linux implementation thing
* rather than a description of the hardware.
*/
st33spi_probe_acpi(spi);
/* Allocate driver data */
st33spi = kzalloc(sizeof(*st33spi), GFP_KERNEL);
if (!st33spi)
return -ENOMEM;
/* Initialize the driver data */
st33spi->spi = spi;
spin_lock_init(&st33spi->spi_lock);
mutex_init(&st33spi->buf_lock);
INIT_LIST_HEAD(&st33spi->device_entry);
/* If we can allocate a minor number, hook up this device.
* Reusing minors is fine so long as udev or mdev is working.
*/
mutex_lock(&device_list_lock);
minor = find_first_zero_bit(minors, N_SPI_MINORS);
if (minor < N_SPI_MINORS) {
struct device *dev;
st33spi->devt = MKDEV(st33spi_major, minor);
dev = device_create(st33spi_class, &spi->dev, st33spi->devt,
st33spi, "st33spi");
status = PTR_ERR_OR_ZERO(dev);
status = sysfs_create_group(&dev->kobj, &st33spi_attr_grp);
if (status) {
dev_err(&spi->dev, "sysfs_create_group failed\n");
}
st33spi->st33spi_csinfo = spi_get_ctldata(spi);
} else {
dev_dbg(&spi->dev, "%s : no minor number available!\n",
__FILE__);
status = -ENODEV;
}
if (status == 0) {
set_bit(minor, minors);
list_add(&st33spi->device_entry, &device_list);
}
mutex_unlock(&device_list_lock);
st33spi->speed_hz = spi->max_speed_hz;
dev_dbg(&spi->dev, "%s : st33spi->speed_hz=%d\n", __FILE__,
st33spi->speed_hz);
/* set timings for ST33 */
#ifdef ST33NFC_QCOM
spi_param = devm_kzalloc(dev, sizeof(spi_param), GFP_KERNEL);
if (spi_param == NULL)
return -ENOMEM;
/* Initialize the driver data */
spi_param->spi_cs_clk_delay = 90;
spi->controller_data = spi_param;
#else
dev_err(&spi->dev, "%s : TSU_NSS configuration be implemented!\n",
__func__);
/*
* platform-specific method to configure the delay between NSS
* selection and the start of data transfer (clk).
* If no specific method required, you can comment above line.
*/
#endif
spi->bits_per_word = 8;
if (status == 0) {
spi_set_drvdata(spi, st33spi);
(void)st33spi_parse_dt(&spi->dev, st33spi);
if (!st33spi->spi_state) {
dev_dbg(&spi->dev, "st33spi: probe - put spi pins to low \n");
st33spi_pinctrl_configure(st33spi, false);
} else {
st33spi_pinctrl_configure(st33spi, true);
}
} else {
kfree(st33spi);
}
return status;
}
static int st33spi_remove(struct spi_device *spi)
{
struct st33spi_data *st33spi = spi_get_drvdata(spi);
/* make sure ops on existing fds can abort cleanly */
spin_lock_irq(&st33spi->spi_lock);
st33spi->spi = NULL;
st33spi->spi_reset = NULL;
spin_unlock_irq(&st33spi->spi_lock);
/* prevent new opens */
mutex_lock(&device_list_lock);
list_del(&st33spi->device_entry);
device_destroy(st33spi_class, st33spi->devt);
clear_bit(MINOR(st33spi->devt), minors);
if (st33spi->users == 0) {
kfree(st33spi);
#ifdef GKI_MODULE
class_destroy(st33spi_class);
unregister_chrdev(st33spi_major, "st33spi");
#endif
}
mutex_unlock(&device_list_lock);
return 0;
}
static struct spi_driver st33spi_spi_driver = {
.driver = {
.name = "st33spi",
.of_match_table = of_match_ptr(st33spi_dt_ids),
.acpi_match_table = ACPI_PTR(st33spi_acpi_ids),
},
.probe = st33spi_probe,
.remove = st33spi_remove,
/* NOTE: suspend/resume methods are not necessary here.
* We don't do anything except pass the requests to/from
* the underlying controller. The refrigerator handles
* most issues; the controller driver handles the rest.
*/
};
/*-------------------------------------------------------------------------*/
#ifdef GKI_MODULE
module_spi_driver(st33spi_spi_driver);
#else
static int __init st33spi_init(void)
{
int status;
pr_info("Loading st33spi driver\n");
/* Claim our 256 reserved device numbers. Then register a class
* that will key udev/mdev to add/remove /dev nodes. Last, register
* the driver which manages those device numbers.
*/
BUILD_BUG_ON(N_SPI_MINORS > 256);
st33spi_major =
__register_chrdev(0, 0, N_SPI_MINORS, "spi", &st33spi_fops);
pr_info("Loading st33spi driver, major: %d\n", st33spi_major);
st33spi_class = class_create(THIS_MODULE, "st33spi");
if (IS_ERR(st33spi_class)) {
unregister_chrdev(st33spi_major,
st33spi_spi_driver.driver.name);
return PTR_ERR(st33spi_class);
}
status = spi_register_driver(&st33spi_spi_driver);
if (status < 0) {
class_destroy(st33spi_class);
unregister_chrdev(st33spi_major,
st33spi_spi_driver.driver.name);
}
pr_info("Loading st33spi driver: %d\n", status);
return status;
}
module_init(st33spi_init);
static void __exit st33spi_exit(void)
{
spi_unregister_driver(&st33spi_spi_driver);
class_destroy(st33spi_class);
unregister_chrdev(st33spi_major, st33spi_spi_driver.driver.name);
}
module_exit(st33spi_exit);
#endif
MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
MODULE_DESCRIPTION("User mode SPI device interface");
MODULE_LICENSE("GPL");
MODULE_ALIAS("spi:st33spi");